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Abstract

In this paper, we investigate the locomotion and control of a 23 degree of freedom
simulated salamander robot. We examine different the parameters controlling both
walking and swimming using a sine-based controller and a central pattern generator
(CPG). We find that, when optimizing the average speed through stematic tests
and particle swarm optimization, the optimal gait and swimming trajectories are
similar to the movement of actual salamanders. Finally, we improve our salamander
by adding stereovision and model the biological vision system with a neural network
so that the salamander is capable of reaching an object.

1 Robotic salamander model

All of the experiments descibred in this report were done in simulation using the Webots
software by Cyberbotics Ltd. [5]. The software encorporates an integrated development
environment (IDE), physics engine, and 3-dimentional graphics engine. Running tests
in simulation has several advantages when compared to physical experiments: hardware
prototyping is time consuming, commercial robots are expensive and fragile, simulation
allows for rapid changing of the experimental setup, measuring physical quantities is
easier in a virtual environment, and tests can be performed in faster than real-time.
The salamander robot model we used has 23 active degrees of freedom: 11 along the
spine, 3 for each hind limb, and 3 for each forelimb (Figure 1). The model is based
on an actual, 26 degree of freedom robot in the Biorobotics Laboratory of the École
Polytechnique Fédérale de Lausanne (EPFL). It was designed based on 3-dimentional
locomotion data recorded of a live salamander so that it could accurately reproduce
the swimming and walking motion of a biological speciemen. The similarity between
the biological, physical, and simulated salamanders means that the simulation results
can have both physical and biological significance. That is to say, our exploration of
locomotion parameters in simulation can be used to create an effective controller for the
pysical robot and/or gain insight into the biological workings of live salamanders. In the
following sections, we examine the parameters associated with locomotion, implement a
more advanced and robust controller, and ultimately create a simulated salamander with
a biologically-inspired vision and locomotion. Along the way, we compare our results to
biological data and try to extract meaning from the similarities and differences.
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(a) Perspective view (b) Top view

Figure 1: Webots model of salamander. The black lines indicate the servo axes of rotation.

2 Sine-based controller

The goal of this first section is to explore and optimize the different parameters that
control salamander motion. We begin by noticing that, in animal locamotion, the tra-
jectories of joint angles are continuous and periodic. That is so say that transitions are
smooth (not jerky) and repetative. Furthermore, we observe that the overall gait (e.g.
walk, trot, gallop) is periodic such that individual joint trajectories can simply be de-
fined by a relationship to a common periodic signal. From these observations, we can
create a simple sine-based controller in which each joint angle is calculated by applying
a particular phase shift, scaling factor, and offset to a common sine wave signal. Such a
sine-based controller can be described by:

θi = Ai sin (ωit+ φi) + θi (1)

where θi is the desired joint angle for motor i, Ai is the amplitude, ωi is the frequency,
φi is the phase lag, and θi is the offset. Given this simple controller, we can easily imple-
ment relatively complex motions in the body by defining the relationship of each joint to
the central frequency. Unfortunately, while this model can very easily syncronize motion
between limbs, it has poor biological meaning (as all relative motion is strictly defined),
and needs a completely different model for swimming and walking. Nevertheless, it is
useful for evaluating and optimizing externally visible parameters such as the amplitude,
frequency, offset, and phase lag that still come into play with more advanced controllers.
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2.1 Swimming

Figure 2: Traveling wave in axial muscles of swimming salamander (Ijspeert ?).

We begin by looking at the salamender swimming motion. It is relatively simple and is
dominated by a traveling wave down the spine – much like a lapray (Figure 2). Based
on the scientific data presented in ???, we assume a constant phase lag between body
segments (a good assumption except near the pectoral and pelvic girdle [2]). Given N
segments and uniformly increasing phase lags φi+1 − φi = ∆φ, we find that the head-tail
phase lag is N∆φ. One cycle is 2π so the number of cycles on the body is k = N∆φ

2π
,

known as the wave number. Knowing that salamanders typically have a wave number
of k = 1, we calculate the phase lag between segments ∆φ = 2πk

N
= 2π

11
≈ 32.72◦. Each

segment has a slightly greater phase lag than the pervious one giving φi = i ∗ ∆φ. We
also observe that the amplitude of oscilation tends to increase from head to tail. In
order to test the implications of this observation, we implemented a linearly increasing
amplitude from head to tail with an maximum value of Atail at the last segment (and
a corresponding linearly increasing aplitude from tail to head with a maximum value
of Ahead). By adjusting the relative tail versus head movement, we can test whether a
constant, increaing, or decreasing amplitude along the body is better.

2.1.1 Testing

We performed a series of systematic tests, modifying two parameters at a time to see
how they affected the quality of locomotion. As a measure of the quality of locomotion
motion, we meaured the average speed of the robot during each simulation run (speed =
distance from starting point

simulation time
) and the motor effort (as measured by the integral of the torques

applied by the simulated motors). Based on our observations, we had several hypotheses
we hoped to answer:

• To what extent can a simple sine-based controller recreate salamander swimming
motion?

• Is having a larger amplitude toward the tail benefitial for motion?
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A simple implementation of a travelling wave along the spine with a wave number of
one reveals that we can, quite effectively, create at least a high-level approximation of
salamander swimming motion using sine-based controllers. The motion we observe is
both effective and visibly similar to that of biological specimens. We also notice that a
higher amplitude at the tail end of the body was more effective. Figure 3 shows the speed
and motor effort measurements for one of our systematic tests. We see that the optimal
speed is achieved with essentially no movement of the head and an increaing amplitude
as we approach the last segment. We also observe that the amount of energy required is
greater for motion of the head than motion of the tail. In fact, the most energy intensive
motion is moving the front of the salamander while keeping the tail rigid. We hypothesize
that this is due to the large size of the head and increased effort it takes to move it in
such an inefficient way (the tail is almost working against the fore-body segments).

(a) Speed (b) Motor effort

Figure 3: Systematic tests reveal that lower head movements are advantageous (for both
speed and energy consumption) and that the optimal speed uses relatively large tail
motion

We suspected that salamander motion is optimize for speed and efficiency, so we
attempted to optimized the parameters of our sine based model before making com-
parisons. In particular, we optimized for the average speed of travel given a contant
frequency. Figure 4 shows the results of this systematic test. We find that the optimal
speed for a frequency of ω = 0.5 Hz is 0.2401 m/s with Ahead = 0.08 and Atail = 0.76.
These values have little biological corresponence other than to tell us that an increasing
amplitude from head to tail (with only minimal head movement) is optimal.
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(a) Speed (b) Motor effort

Figure 4: Fine-grain search to optimize speed.

2.1.2 Biological comparison

The finding that the optimal speed occurs with increasing amplitudes along the spine
corresponds to the observed motion of actual swimming salamanders. Figure 5 shows
video capture of real salamander swimming and the simulated salamander (parameters
optimized for speed). Overall, the two match quite well, but there is slightly more head
motion in the real salamander and the real tail is more flexible, allowing for more efficient
thrust.

Figure 5: Swimming mode of real salamander (top) and simulated salamander (bottom).
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2.2 Walking

Figure 6: Standing wave signal in muscles of walking salamander (Ijspeert ?).

The walking motion of salamanders is quite a bit more complex than swimming. Model-
ing the coordination of the legs can quickly become quite complicated depending on the
different gaits. Nevertheless, a sine-based controller can effectively synchonize the mo-
tion throughout the step cycle to achieve effective, life-like walking. This basic motion, as
measured in actual salamanders is acieved by having diagonal limbs move synchronously
together along some stepping trajectory and lateral limbs working in anti-phase (phase
lag φ = π). Implementing a standing wave of the body allowing for greater reach of the
legs and can greatly increase the speed of motion. Figure 6 shows the signal activity
that controls the contraction of the muscles that create this standing wave (and walking
motion) in actual salamanders. There are many parameters that control the coordina-
tion of joints to achieve walking, even with a simplistic and relatively ridged sine-based
controller. Instead of arbitrarily changing parameters with little biological significance,
we wanted to answer the following questions through out experimentation:

• To what extent can a simple sine-based controller recreate the salamander walking
motion?

• To what extent is the walking motion of salamanders optimized?

2.2.1 Initial testing

We began by implementing a simple sine based controller to control the walking motion.
The spine segments all move with an common amplidue of A and a standing wave is
created by introducing phase lag of φi = π for the body segments between the legs (i=1
through 5). The legs themselves each follow a half-elipse trajectory centered around a
point at a position away from the body. The duty cycle (amount of time with the leg
on the ground throughout the period) and phase lag of these leg trajectories can also be
adjusted. After performing several systematic tests we achieved a reliable and life-like
walking trot gait.
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2.2.2 Particle swarm optimization (PSO)

In order to determine whether or not the walking motion of salamanders is optimized, we
decided to optimize our simulated salamander and then compare the results to biological
data. Due to the size and interdependence of the search space, rather than perform a series
of systematic tests, we opted to use a more advanced and applicable optimization method:
particle swarm optimization, or PSO. PSO is an iterative algorithm that attempts to
optimize a fitness function by flying particles through the search space with their position
representing a candidate solution. Each iteration a particle updates its position based on
its velocity, the best candidate solution found by the particle, and the best solution found
by any particle (global neighborhood, or GBEST). We used an 8-dimensional search space
with the dimensions being the duty cycle of each leg (4), the phase lag relative to one leg
(3), and the amplitude of the spine oscilation (1). We attempted to optimize locomotion
as measured by the average speed. The position of the ith particle in 8-dimentional space
is represented as xi = (xi1, xi2, ..., xi8) and its velocity is given by vi = (vi1, vi2, ..., vi8)
(both of which are randomly initialized). Each iteration we update the position and
velocity as decribed by the following equations:

vi = c3 (vi + c1 ∗ rand() ∗ (pi − xi) + c2 ∗ rand() ∗ (pg − xi)) (2)

xi = xi + vi (3)

where rand() is a random number between 0 and 1, pi is the position of the best
solution found by particle i, pg is the position of the global best solution, c1 is the
cognitive factor (attraction to personal best solution), c2 is the social factor (attraction
to global best solution), and c3 is the constriction factor (c3 < 1) which causes the
particles to slow over time and perform more localized searching.
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Figure 7: The particle swarm optimisation quickly maximizes the robot’s walking speed.

Figure 7 shows the average and best fitness (average speed) results from our particle
swarm optimization over the 100 iterations (20 particles, 10 second simulation, ω = 0.5Hz,
c1 = 1, c2 = 1, c3 = 0.5). The method is able to quite quickly optimize the parameters
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to maximize our fitness function (good global best solution after only 10 iterations). We
found a maximum speed of 0.204 m/s, which is almost exactly the same as our swimming
velocity for the same frequency. We then took these optimized parameters and compared
the result to biological data.

2.2.3 Biological comparison

When we compare our optimized sine-based controller to biological data, the results are
quite surprising. Qualitatively, we see many similarities between our evolved controller
and actual salamander locomotion. They both use a walking trot gait with similar duty
cycles and phase lags. They also travel approximately the same number of body lengths
per cycle. Figure 8 shows both the a real salamander motion and our simulated sine-based
using speed-optimized parameters.

Figure 8: Walking mode of real salamander (top) and simulated salamander (bottom).

Figure 9 shows biological data from [2] showing the phase difference between diagonal
(RF and LH) and lateral (LH and RH) limbs. This data shows that diagonal limbs typi-
cally have a phase difference of 13.8±4.8% when walking. The phase difference between
the RF and LH limbs of our optimized controller is 3.337847−2.606619

2π
= 11.6%. For lateral

coordination, we find that the phase difference between the LH and RH limbs is a little
off from the biological value of 49.1±4.3% at 36.1% (likely due to differences in the duty
cycles). Nevertheless, we see that the model is able to capture some of the more intricate
relationships between limbs. In particular, if optimizing for speed results in similar phase
lags to what we see in nature, this could suggest that the reason salamanders walk the
way they do is to maximumize their speed (and in turn increase their fitness).
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(a) Diagonal coordination (b) Lateral coordination

Figure 9: Interlimb coordination during overground stepping, showing percent phase
difference between limbs [2].

3 CPG controller

In this second part, we use a Central Pattern Generator to control the gait of our robot.
CPGs are a bio-inspired way to generate rythmic patterned outputs. We try here to in-
vestigate the ability of the CPG to describe and reproduce the gait of the real salamander
and compare it with the previous results of the sine-based controller. Then, we try to use
the CPG to describe the transition between swimming and walking with a simple model.

3.1 Model

Our model is inpired from [4] and is composed of a body CPG (with only one oscillator
per degree of freedomunlike two in [4]) and a limb CPG implemented as a system of
coupled nonlinear phase oscillators with controlled amplitude:

θ̇i = 2πωi +
∑
j 6=i

rjwij sin(θj − θi − φij)

ṙi = ai(Ri − ri)

xi = Xi + ri cos(θi)

(4)

For simplicity, we set the same frequency ω and amplitude convergence rate a for all
oscillators. We also restrict to symmetric coupling (a biologically coherent hypothesis),
i.e. φij = −φji for all couple i, j of oscillators. According to this model, the oscillators
should synchronize and the phase differences θj − θi should converge toward the defined
phase bias φij. The amplitude ri should converge toward Ri.

We use the hypothesis described in [4] in our model:

• Hypothesis 1: The body CPG spontaneously produces travelling wave when ac-
tivated with a tonic drive.

• Hypothesis 2: The strengths of the couplings from limb to body oscillators are
stronger than those from body to body oscillators and from body to limb oscilla-
tors. Thus, the limb CPGs override the natural tendency of the body to produce
travelling waves.
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Figure 10: Configuration of the CPG model, and notations for the coupling strength (see
3.3).

• Hypothesis 3: Limb oscillators stops oscillate above a frequency threshold. Thus,
they do not override the limb CPG and the salamander is switching to a swimming
gait.

• Hypothesis 4: Limb oscillators have lower intrinsic frequency than the body os-
cillators. Therefore, the frequency increase rapidly when switching from walking to
swimming.

For simplicity, we will not use this last hypothesis, and we just consider that the limbs
stop oscillating above a certain frequency threshold.

The configuration of our CPG model is illustrated in Figure 10. As shown, it consists
of a chain of 11 oscillators driving the spine motors and 4 oscillators for the limbs.

In accordance with our model, we use a significantly lower coupling strength between
the body oscillators than with the limbs. The coupling phase (i.e., the phase lag after
convergence) between neighboring body oscillators is constant so as to generate a trav-
elling wave, and, throught equation 5 is directly linked to the wave number1 k and to
the number Ñ of body oscillators (11 in our case).

φi−1,i =
2πÑ

k
, i = 2..Ñ (5)

The following plot show the two behaviours of the CPG. We tested it using Matlab R©,
with a wave number of 1, coupling strenth of 0.5, 5 and 2 for the coupling body/body,
body/limb and limb/limb respectively. The frequency threshold for limb oscillation was
set to ωT = 1.2. Thus, we tested walking with ω = 1 and swimming with ω = 1.4.

1the number of waves on the body at a given time
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Figure 11: Left: Walking gait (ω < ωT ). Right: Swimming gait (ω > ωT ).

On the first figure, we see that each half of the body are in phase, and the two parts
are in opposite phase. We thus obtain our waking gait. On the second figure, the limbs
have stopped oscillating, and after a transient state we have a constant phase lag withing
neighboring spine oscillators, which account for the travelling wave of the swimming gait.

We are also able to study the transition between the two gait regimes, by linearly
increasing ω from 1.0 to 1.4. On Figure 12, we see that the CPG oscillate with a walking
regime during the first half of simulation time, with an slightly increasing frequency, then
jumps to swimming gait after a short transient state.
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Figure 12: CPG behaviour when we increase the frequency. When it reaches the thresh-
old, the limb CPG stops oscillating (after a transient state) and the body CPG converges
to a travelling wave.
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3.2 Study of the dynamical system

The CPG model is a dynamical system, but the high number of variables makes it difficult
to study formally. In order to study the dynamical system, we will first focus on a more
simple model with just two oscillators 1 and 2, and the same notations as previously.

Let us note θ = θ2 − θ1, φ = φ2,1 and γ = r1w2,1 + r2w1,2. We then have

θ̇ = −γsin(θ − φ),

which is a one-variable dynamical system, whose phase diagram is just a sine function
plotted on Figure 13.
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Figure 13: Phase diagram

Points of equilibrium are found at θ̇ = 0, which leads to θ = φ+ kπ. For θ = φ+ 2kπ,

the equilibrium is stable since dθ̇
dθ

= −γ < 0, but it is instable for θ = φ + (2k + 1)π

since dθ̇
dθ

= γ > 0. This means our CPG is in instable equilibrium when some couple
of oscillators i, j have phase differences opposite to the defined phase bias φj,i (i.e. of
φj,i + π).

In the plots of Figure 11, we initialized the phase states θi randomly close to zero,
in order to take into account the limited precision of the motors. If we initialize them
to 0 (exactly), we obtain the plot on Figure 14 for the walking gait. On the first half,
all the limbs are in phase instead of being in opposite phase for neighboring limbs. This
is an instable equilibrium since, for instance, the two fore limbs have a phase bias of 0
instead of π. At the half of the simulation, we randomly perturbate the phases θi, and
the system goes to stable equilibrium.
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Figure 14: Instable configuration in walking mode. After a slight perturbation, the CPG
goes to stable equilibrium.

The transient phase between the two regimes is directly linked with the convergence
rate a, which determines how fast the amplitude of the limbs will converge to zero when
switching to swimming gait. On Figure 15, we plot the phase differences between the
different oscillators and the first oscillator (the head), in order to compare the transition
between the two gaits. In the first half (walking), the phase difference are the same within
the front half of the body and within the back half (standing waves).After the transition,
the CPG converges to a state when the phase differences are linearly increasing along the
body (travelling waves). We see the transition becomes more abrupt if we increase the
factor a from 0.2 to 2, but we do not see any visible change from 2 to 10. This is because
the transition is now limited by the coupling strength wij, which determines how fast the
phases θi will update.
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Figure 15: Phases differences with the first oscillator (the head of the salamander). we see
the transition between the walking gait (standing waves ; same phase difference within
each half of the body) and the swimming gait (travelling waves ; regularly increasing
phase differences along the chain of the body oscillators).

3.3 Salamander robot behaviour

We now try to address the question of the coupling between the CPG oscillators. Our
systematic analysis in Part 2 gives us good parameters for the amplitude, offset and
coupling phase of the different oscillators. Starting with this, and as discussed previously,
the coupling strength and the amplitude convergence rate will influence the transition
between the two gaits. Our goal is to study the effect of these parameters on the transition
using our simulation in Webots R©.

We therefore focus our study on three parameters:

1. The coupling strength between the segments of the body wbb,

2. The coupling strength of the body with the limbs wbl,

3. The coupling strength between the different limbs wll.

Using Figure 10, wbb accounts for the coupling strength w0,1, w1,2, · · · , w9,10 and their
symmetrical, wbl accounts for wi,11, wi,12, wi,13, wi,14 where i = 0 · · · 10, and wll for w11,12,
w12,13, w13,14, w14,11 and their symmetrical.
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We first tested the influence of the coupling strength within the limbs, wll on the
walking gait (this influence, of course, is null on the swimming gait, since the limbs are
deactivated). On Figure 16, we notice that wll does not influence the gait, at least in
the long term, since the speed and the stability remains almost constant. The measure
were done using our Webots R©simulation, with wbb = 0.5, wbl = 5, and a frequency below
the threshold so that we obtain a walking gait. This can be explained by the fact that
the limbs are not influenced by the rest of the body. Thus, the limb CPG will converge
toward the same equilibrium regardless of wll, which only influence the convergence rate.
The rest of the body will synchronize with the limbs thanks to wbl, also regardless of wll.

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Frequency

S
p
e

e
d

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Frequency

S
ta

b
ili

ty

Figure 16: Influence of wll on the speed and the stability of the walking salamander.

The same is obtained with the swimming gait and the coupling within the body, wbb
(Figure 17). The coupling strength do not change the equilibrium position, but only
changes the convergence rate toward this equilibrium.
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Figure 17: Influence of wbb on the speed and the stability of the walking salamander.

Our following step is to conduct a systematic analysis of the influence of wbl and wll
on the gait. We choose arbitrarity to set wll to 5, which is big enough to avoid a long
transient state.
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Figure 18: Influence of wbl and wbb on the speed and the stability of the salamander. As
expected, the fastest gait is when wbl is maximized and wbb is minimized, so that the
travelling waves effect is almost cancelled by the standing waves.

3.3.1 Gait transition

We now study the transition between the walking gait and the swimming gait, that is
allowed by our model. This transition is done with an increase of the frequency ω, so
that the limbs’ amplitude is set to zero, and the body’s movement switches to travelling
waves.

We thus create a Webots R©environment with a sloped ground and water (Figure 19).
We make our salamander walk in direction of the water. We see the transition between
the two gaits on Figure 20. When the salamander enters the water, it should continue
walking while the ground is high enough. When the water is deep enough, the salamander
switches to travelling waves and begins swimming. Our model is very simple and the
salamander does not detect the water and the deepness. Instead, the controller knows
the position of the water and knows at which position is should switch between the two
gaits. A future improvement would be to detect when the contact between the feet and
the ground stops before switching to a swimming gait [1].

Figure 19: Sloped ground with water for the study of the gait transition
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Figure 20: Transition between swimming and walking gait. For this simple model, the
salamander knows the position of the surface and do not detect it.

3.4 Results and discussion

Our results with this CPG model can lead us to conclude that CPG models presents many
advantages compared to sine-based controllers. The power of dynamical systems allows
smooth changes of parameters, as well as good robustness toward perturbations, without
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jerky movements that could harm the mechanics of a real robot. The coupling parameters
between the oscillators are very convenient to model several gaits and transitions within
them. Finally, This model has the advantages of being close to biological mechanism
that were designed by millons of years of evolution. To mention some disadvantages of
CPG models, let us notice that parameters are sometimes difficult to choose, and require
simulation or experiments. The use of optimization methods (like PSO) or evolutionary
algorithms could be used to optimize them.

4 Adding vision

4.1 Model of the salamander visual system

The final aspect of salamander locomotion that we chose to investivate was adding a
higher level of control by implementing a simple vision system. The model that we im-
plemented is based on unpublished work by Petreska and Ijspeert and on [3]. It uses
disparity in the left and right visual fields to track and move towards a target. For this
part, we added two camera sensors to the head to act as the eyes (retina) of the sala-
mander. In the model, we assume that the retinal ganglion cells have a square receptive
field and are only sensitive to changes in the visual field (implemented as the difference
in intensity between two time steps).

Figure 21: Visual system of the salamander. The tectum cells and the brainstem are
modelled as an array of neurons.

Our salamander uses two eyes, each with a 64x64 array of cells. The signals from
these cells are passed to a 32x32 array of tectum cells, (Figure 21). Each tectum cell
is a neuron that takes a 3x3 array of retinal inputs and effectively averages the values,
creating a more compact representation of what the eye is seeing. The brainstem then
computes the absolute difference between the left and right optic tectum maps, providing
some measure of depth. Finally, based on the total activity on each half of the brainstem,
the brain outputs a tonic input (offset) to the spinal chord which causes it to move toward
areas with high level of percieved the motion (as is caused by objects in the visual field).

The direction of movement of the salamander is controlled by the offsets Xi (see
equation 4) for the body segments. It allows to generate an asymetrical gait which
changes the direction of walking of the salamander.
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4.2 Results and discussion

Figure 22: Walking toward a target using vision. Left: Salamander walking toward the
target. Right: brain-stem activity. The salamander turns to the side where the number
of firing neurons, corresponding to the number of pixels that changes a lot from one frame
to another, is bigger. Note that we had to use an uniform ground to prevent it to activate
too much cells and to make the object indistinguishable.

As represented on Figure 22, the object (a can) create areas of activity (firing neurons).
As the salamander comes close to the object, the area of activity becames wider.
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This study account for only one object. Some trials with two objects (of approximately
the same size) lead to the convergence toward the closest object. The salamander first
hesitates between the two while they are both far (and of about the same size on the
cameras). When approached, the closest becomes more significant on the brainstem, and
our salamander thus converge toward it.

4.3 Improvement

An easy way to improve the visual system is to use a finer discretization of the possible
directions. Here, we only discretize with two direction: left and right. We could as
well use n direction, by splitting the brainstep array horizontally by n, and associate a
direction for each subdivision. We could also change our binary controll (one direction
an not any other), by assigning to each direction a weight proportionnal to the number
of firing neurons in the corresponding subdivision of the screen. This could also improve
the behaviour with several object (a big object on the back first attracts attention, before
an eventual smaller object becomes closes and changes the direction of attention of the
salamander.
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