
1

Mobile robot position estimation and navigation
Raphaël Cherney Frédéric Wilhelm

I. INTRODUCTION

This report describes the implementation of a
position estimation and navigation scheme using the
e-puck mobile robot. The robot is placed in an arena
with internal walls and senses the environment
using a rotating distance sensor. Because the inter-
nal geometry is non-trivial, the robot can estimate
its position by comparing its sensor readings to
an internal map. Tests were done using the Enki
simulator and with physical hardware. The robot
was able to avoid obstacles, determine its position
in the arena, and travel to user-defined waypoints.

II. LOCOMOTION

A. The e-puck platform

The e-puck robot is a small, differential wheeled
mobile robot developed at the Swiss Federal In-
stitute of Technology in Lausanne (EPFL). For
our experiments, the robot was remotely controlled
through an off-board Linux computer using a Blue-
tooth connection. The robot has a number of on-
board sensors, but for this project we only used the
IR proximity sensors and a rotating distance sensor
to control both stepper motor wheels.

B. Braitenberg controller

In order to make the robot avoid obstacles, we
implemented a simple Braitenberg-style controller.
Both wheels start with a forward bias, and a each
wheel speed is adjusted by subtracting weighted
values for the IR proximity sensors on the opposite
side (see Figure 1). In this way, obstacles sensed
on the right side of the robot will cause the left
wheel to slow down or reverse, resulting in the
robot turning to the left, away from the obstacle.
Similarly, obstacles on the left side cause the robot
to turn right. This simple controller allows the robot
to effectively avoid running into walls or other
obstacles.

Figure 1: Braitenberg controller.

A problem with Braitenberg controllers is that
they can often cause the system to get stuck in
corners or dead-ends. This happens when the for-
ward bias and weighted inputs cancel each other
out. In this case, the robot stops moving, the sensor
inputs remain the same, and the robot remains
stuck. In order to alleviate this problem, we added
some noise to controller which allowed the robot
to (randomly) get out of these dead-end situations.

Note that we are using the IR proximity sensors
to avoid obstacles instead of the rotating distance
sensor. This is because the proximity sensors have
a faster update rate than the rotating sensor. Since
the proximity sensors are statically mounted to the
robot, we do not have to wait for a turret to check
a given direction. This allows us to have a quicker
reaction time and helps us avoid obstacles even at
higher speeds.

C. Gradient ascent
In addition to simple obstacle avoidance, we

implemented a path planning algorithm to guide
the robot to waypoints. This was accomplished
using a gradient ascent approach. The user defines a
waypoint using the map from the Enki interface. A
gradient map of the entire arena is then created us-
ing a gradient propagation algorithm often referred



2

to as wavefront expansion or grassfire. In our imple-
mentation, the goal cell is given a value of 255 and
all other connected cells are given a value based on
the minimum Manhattan distance to the goal though
accessible cells (value = 255 − distance). The
maximum (positive) slope at a given point gives the
desired direction (since it will, by definition, lead to
a cell closer to the goal). Figure 2 shows an example
of the gradient map and the resulting path. Note
that what we are calling a gradient map does not
actually contain the gradients at each point; rather,
it contains the information from which the gradient
can be found.

Figure 2: Gradient ascent algorithm leading to goal.

III. LOCALIZATION

A. Distance histogram matching
The robot is equipped with a rotating distance

sensor that enables the detection of obstacles in 64
different directions around the robot. The result is
a distance histogram represented as a vector of 64
dimensions (Figure 3).

Figure 3: Proximity histogram obtained though the
rotating distance sensor. The real resolution is 64
scans per turn.

The key principle of our localization model is
to see this histogram as a characteristic of any

point in the map, given the obstacle positions. Said
differently, for each accessible point of the map,
we can associate the histogram that would be read
by the sensor when the robot is at that point with
direction zero (i.e. in the x-axis direction). For
simplicity as well as for computational reasons, the
map is sampled with a grid, each cell having it’s
own corresponding histogram.

B. Probability distribution
Given the proximity histogram of each cell of

the grid, we can describe the estimation of the
robot’s position as a probability map defined over
the accessible space. The probability of being in a
given cell will increase when the distance between
the two histograms (for the best direction of that
cell) decreases. Our algorithm has several different
steps:

1) Compute the best direction for each loca-
tion and fill in the probability map
For each accessible point (x, y) (whose cor-
responding histogram is known), compute the
robot’s orientation for which the matching
between the measured histogram and the em-
placement histogram is the best (using the
Euclidian distance). The resulting direction
is the most probable direction supposing the
robot is in (x, y).
The matching (the Euclidian distance) be-
tween the two histograms is stored for
each position, resulting in a probability map
(which is not explicitly stored; what is really
stored is the distance between the histograms,
which has to be minimized over the space,
which corresponds to the maximization of the
location probability).

2) Update the new probability map taking
into account the prior knowledge of the
position and direction
For the cells in the neighborhood of the
previous position, the probability is increased.
This corresponds to a decreased distance in
the histogram-distance map. We implemented
this by multiplying the cells within one cell
of the previous estimated position by a factor
α < 1 (experimentally, α = 0.3 was a good
value). This prevents the robot from jumping
from one position evaluation to another when



3

there are several maxima of the probability
map.
As an additional step to avoid jumps in
the position estimation, we penalize the dif-
ference between the previous and proposed
orientations: if the best direction of a cell
(x, y) (computed in step 1) is far away from
the previous direction (in the angular sense),
it is very unlikely to be the current po-
sition given the time needed by the robot
to turn. This probability is thus penalized.
We implemented this by adding a term to
the histogram-distance map, proportional to
the (absolute) distance between the previous
direction and the cell’s best direction, mul-
tiplied by a weight (experimentally fixed at
1000).

3) Evaluate the most probable position
By minimizing the modified histogram-
distance map, we can find the most probably
position allow with the corresponding orien-
tation. We thus have a complete estimate of
our robot’s position.

IV. RESULTS

We began our testing using the Enki simulator.
Using this tool, we were able to try out our con-
trollers and assess various methods for improving
our position estimate. Because we designed the
controllers to work in this simulated environment,
we got very good and consistent results once our
system was tuned. The Enki simulator includes
visualizations for the Probability map (really a
histogram-distance map) and the Gradient map (see
Figure 4). The Probability map shows the difference
between the measured histogram and the known
histogram (also taking into account the prior po-
sition knowledge). This gives us some measure of
the probability of being in a particular position.
The green square represents the most probable
position and the blue line shows the corresponding
orientation. The Gradient map is used to find the
path to the waypoint marked in red (lighter cells are
“higher”). These visualizations are also used when
testing the physical hardware, explaining why Enki
is still present in the physical robot testing code.

(a) Probability map (b) Gradient map

Figure 4: Visualizations for the robot position and
desired direction.

When we moved from simulation to the physical
hardware, we encountered several issues. While the
robot was still able to avoid obstacles, the way-
point navigation was extremely poor. The position
estimates were not consistent, causing jerky and
inconsistent behavior. This is due to the fact that
the real rotating distance sensor has a relatively low
refresh rate (compared to the speed of motion). This
means that the distance histogram was not fully
updated each time we tried to estimate the position.
Instead, the robot moved while in the middle of a
measurement, meaning that the histogram matching
was always off.

In order to alleviate this problem, we imple-
mented a simple finite state machine with two
states: a scanning state and a moving state. The
robot simply alternated between these two states
based on predefined timing. During the scanning
state, the robot would remain stationary to complete
a distance scan and update its histogram. It would
then have a brief moving state where the motors
were active before stopping and completing an-
other scan. This resulted in slower movements but
dramatically improved position estimation. Because
the robot was able to have a current and correct
histogram each time it estimated its position, we
were actually able use the same code from the
simulator to navigate around the arena.

V. CONCLUSION

Localization and navigation are important topics
in the field of robotics. Here we presented a simple
setup to control an e-puck mobile robot. By com-
paring sensor values to a grid of expected sensor
values, we are able to estimate the position and



4

orientation of the robot within an known arena.
Using this position estimate and a user-defined
waypoint, we determine the path using a gradient
ascent algorithm. This is an interesting experiment,
but real-world applications would likely need to be
more advanced and robust. The scheme presented
here requires a well-known and controlled environ-
ment that is not always available. More advanced
techniques such as simultaneous localization and
mapping (SLAM) along with better controllers can
deal with less-controlled, unknown, or changing
environments. Better sensors with faster update
rates, sensor fusion with Kalman or particle fil-
ters, more fine grain maps, more efficient search
algorithms, active beacons, and the use of multiple
robots can all help real-world robots achieve better
position estimation and path-planning, enabling a
wide range of user scenarios.


