
Optic flow based mobile robot control

Raphaël Cherney Frédéric Wilhelm

1 Introduction

Like humans, insects use vision to navigate in their
environment. However, while humans use stereovi-
sion (sense depth through matching of images from
left and right eyes), insects use optic flow – the rel-
ative movement of the environment expressed in the
reference plane of the vision system. Intuitively we
know that, when we are moving, objects which ap-
pear to move quickly through our visual field are
closer to us, while objects that move more slowly are
farther away. Using this same idea, insects are able
to quickly and robustly traverse cluttered environ-
ments [3]. This paper presents an optic flow based
mobile robot controller. Using only optic flow mea-
surements, a robot is made to navigate through a
complex corridor.

2 Optic flow implementation

2.1 The e-puck platform

The e-puck robot is a small, differential wheeled mo-
bile robot developed at the Swiss Federal Institute of
Technology in Lausanne (EPFL). During our tests,
the robot was fully autonomous, but it would send
and receive data to an off-board computer using a
Bluetooth connection through a graphical user inter-
face. The robot has a number of on-board sensors,
but for this project we used a special board with
three TSL3301 cameras (configured to give a linear
102 pixel image) to control the stepper motor wheels.
Figure 1 shows the robot with the 3 cameras: one fac-
ing forward, and two at 45 degree angles to each side.
The field of view of each camera is 60◦, giving a global
150◦ field of view. We could also have placed the two
lateral cameras perpendicularly to the front camera.
Such a configuration would increase the global field
of view (and avoid overlapping), but would introduce
blind spots between the cameras. For the corridor
navigation implementation explained below, we pre-
ferred to have the lateral cameras pointing slightly to
the front, biasing our sensory information for forward
motion. In this way, the robot experiences more optic
flow from objects it is driving toward.

(a) (b)

Figure 1: The e-puck platform with cameras used for
optic flow measurement

2.2 Optic flow calculation

We wanted the optic flow to be calculated in real time
using the onboard PIC microcontroller. To do this,
we used the Image Interpolation Algorithm (I2A)
which is computationally efficient, robust, and gives
a linear estimation of speed [1, 2]. The calculation
of the optic flow uses two consecutive linear images
(taken at ∆t apart) to estimate motion. The inten-
sity of pixel n at time t is given by I (n, t). The
motion s is estimated by comparing the value from
second image I (n, t+∆t) to an approximated inten-
sity Î (n, t+∆t), which is simply linear combination
of the reference image I (n, t) and space-shifted ver-
sions of this image as defined by

Î (n, t+∆t) = I (n, t) + s
I (n− 1, t)− I (n+ 1, t)

2
(1)

We can find the motion s by minimizing the
mean squared error between the estimated image
Î (n, t+∆t) and actual image I (n, t+∆t). In our
implementation, we compute the mean square error
over all of the pixels for each camera. This, in turn,
gives us an estimate of the optic flow

s = 2
Σn [I (n, t+∆t)− I (n, t)] [I (n− 1, t)− I (n+ 1, t)]

Σn [I (n− 1, t)− I (n+ 1, t)]2

(2)
It is evident that the formula (1) is valid only if

the image movement is less than one pixel. This im-
poses a limitation on the time step ∆t between the
capture of two images. This value is computed for the
“worst case” scenario (i.e. when the image movement
is maximum) so that all optic flow measurements will

1

stay within the range -1 to 1. To calculate this value
we only consider the rotational optic flow, which is
generally bigger than the translational optic flow and
which does not depend on the distance of objects.
Given that the maximum wheel speed of the robot is
1.0 turns per second, and given the dimension of the
robot (wheel diameter of 41 mm and distance of 53
mm between the wheels), we can deduce the maximal
rotational speed of the robot:

41 mm/turn · 1.0 turn/s · 2
53 mm

= 1.55 rad/s (3)

Given that each camera has a field of view of 60◦

and 102 pixels, each pixel accounts for 1.027 · 10−2

rad. Finally, the maximum time step is the time dur-
ing which the robot turns this angle with the maxi-
mum rotation speed. This gives us ∆t = 6.6 ms.

In practice: With the given software used for
calibration, the robot is not capable of reaching the
maximum rotational speed. Instead, the maximum
velocity of each wheel is 60 mm/s, which corresponds
to a maximum rotational speed of 60

26.5 = 2.27 rad/s.
The resulting time step is then 4.5 ms (it increases
when the maximum velocity decreases).

2.3 Calibration

In order to test our optic flow implementation, we
measured the optic flow for different rotating speeds.
The results for a ∆t of 4.5 ms are shown in Figure
2. As expected, we find a linear response for optic
flow vs. speed. As the optic flow is measured in pix-
els, we obtain an measurement of around 1 when the
rotational speed is at it’s maximum.

−60 −40 −20 0 20 40 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Rotation speed

O
p
tic

 f
lo

w

Figure 2: Optic flow vs. rotation speed

2.4 Low-pass filter

The optic flow measurements tend to be quite noisy,
as seen in Figure 2. In order to stabilize the read-
ings (and controller), we implemented a simple low-
pass filter which replaces the measurement with a
weighted sum of the new measurement and the pre-
vious value:

y(t) = ax(t) + (1− a)y(t−∆t), 0 < a < 1 (4)

where x the measured optic flow and y the smoothed
value. The experimentally determined value of a =
0.8 gave us good results.

3 Controller

Our goal for this project was to navigate through a
corridor using optic flow measurements to adjust the
robot’s speed and avoid collisions. We tested a num-
ber of different controllers but obtained the best re-
sults from a very simple Braitenberg-style controller.

3.1 Direction control

In order to avoid colliding with walls or other obsta-
cles, the robot needs to react to differences in the
optic flow measured on each side of the robot. In
particular, since objects which are nearer give rise to
a larger optic flow, we want to turn away from higher
optic flow readings. In order to do this, we simply
calculated the difference between the optic flow mea-
surements from the left-facing camera and the right-
facing camera. This difference tells us which side (if
any) has a greater optic flow. We then adjust the
two wheel speeds to turn the robot away from the
higher optic flow (add the difference to one wheel and
subtract from the other). This effectively causes the
robot to move away from the walls and tend toward
the middle of corridors.

3.2 Speed control

We improved our controller by adjusting the speed
for total amount of optic flow measured by the robot.
This caused the robot to slow down as it approached
obstacles and travel more “cautiously” through tight
spaces. This mimics the behavior observed in actual
insects where flying honeybees decrease their speed
as a tunnel narrows [3].

3.3 Braitenberg controller

We then decided to change our algorithm slightly and
create a simple Braitenberg-style controller (see [4]).

2

Both wheels start with a forward bias, and each wheel
speed is adjusted by subtracting the weighted optic
flow value for the camera on the opposite side. In this
way, high optic flow on the right side of the robot will
cause the left wheel to slow down or reverse, resulting
in the robot turning to the left. Similarly, high optic
flow on the left side cause the robot to turn right.
If there is high optic flow on both sides, the robot
will tend to slow down, much like the explicit speed
control described in 3.2.

Figure 3: Braitenberg style controller

This simple controller is extremely effective at
navigating through the corridor. By adjusting the
bias and optic flow weights, we can also make the
robot move faster or slower through the course. A
common problem with Braitenberg controllers is that
they can cause the system to get stuck in corners or
dead-ends. This happens when the forward bias and
weighted inputs cancel each other out. Fortunately,
in the corridor-following problem that we have, this
is not really a problem – making a Braitenberg con-
troller especially well suited in this situation.

3.4 Other experiments

We tested variations of each controller and performed
additional experiments attempting to incorporate in-
formation from the forward-facing camera. We tried
splitting the camera into two optic flow regions (one
for each side) and using this in our controller. In
addition, we attempted to quantify the level of mo-
tion and adjust the speed accordingly. Unfortunately,
these more advanced controllers resulted in a lower
performance. The best results were seen using a sim-
ple Braitenberg controller with an additional speed
reduction based on the total optic flow.

4 Results

In order to test our optic flow based corridor-following
controller, we built a small cardboard coarse for the
robot to traverse. The walls were striped to ease
the optic flow measurements. We tested the robot
at different speeds, and found that (with the proper
weights) the robot could reliably avoid the walls and
complete the course. Figure 4 shows the robot’s path
through the corridor (based on frames in Appendix
A).

Figure 4: Robot path through corridor using optic
flow for navigation

5 Conclusion

Optic flow is an effective, bio-inspired method to nav-
igate in unknown environments. This paper presents
a simple optic flow based controller to drive an e-puck
mobile robot through a non-trivial corridor. While
the controller is reactive and does not plan ahead, it
is able to avoid obstacles and traverse the course. The
same methods can be used to control more compli-
cated maneuvers, such as landing of unmanned arial
vehicles (UAVs) [5] and the techniques can be extrap-
olated to a wide range of new problems.

References

[1] Srinivasan, M.V. (1994) An image-interpolation
technique for the computation of optic flow and
egomotion. Biological Cybernetics 71, pp. 401-
416.

[2] , M. V. (1994). Generalised gradients versus im-
age interpolation: A critical evaluation of two
schemes for measurement of image motion. Aus-
tralian Journal of Intelligent Information Process-
ing Systems 1:41–50.

[3] Srinivasan, M.V., Zhang, S.W., Lehrer, M., Col-
lett, T.S. (1996). Honeybee Navigation en Route
to the Goal: Visual Flight Control and Odometry.

3

The Journal of Experimental Biology, 199: 237-
244.

[4] Braitenberg, V. (1984). Vehicles: Experiments in
synthetic psychology. Cambridge, MA: MIT Press.

[5] J. S. Chahl, M. V. Srinivasan and S. W. Zhang
(2004). Landing Strategies in Honeybees and Ap-
plications to Uninhabited Airborne Vehicles. The
International Journal of Robotics Research 2004
23: 101.

4

A Results

Corridor navigation using optic flow (2 seconds between frames)

5

B Code

#define REGIONS 3

// Calcu late op t i c f low for one region
signed char op t i c f l ow (unsigned char o l d t s l p i x e l s [TSL NUM PIXELS] ,

unsigned char t s l p i x e l s [TSL NUM PIXELS])
{

unsigned int i ;
signed long top sum = 0 , bottom sum = 0 , tmp ;
signed char s ;

for (i = 1 ; i < TSL NUM PIXELS−1 ; i++)
{

tmp = ((signed long) o l d t s l p i x e l s [i −1] − (signed long) o l d t s l p i x e l s [i +1]) ;
top sum += ((signed long) t s l p i x e l s [i] − (signed long) o l d t s l p i x e l s [i]) ∗ tmp ;
bottom sum += tmp ∗ tmp ;

}

// Calcu late s
i f (bottom sum != 0)
{

tmp = 2 ∗ top sum / bottom sum ;
s = (tmp > 127) ? 127 :

(tmp < −127) ? −127 :
(signed char) tmp ;

}
else s = 0 ;

return s ;
}

// Calcu late op t i c f low for a l l cameras
void proces s image (unsigned char o l d t s l p i x e l s 0 [TSL NUM PIXELS] ,

unsigned char o l d t s l p i x e l s 1 [TSL NUM PIXELS] ,
unsigned char o l d t s l p i x e l s 2 [TSL NUM PIXELS] ,
unsigned char t s l p i x e l s 0 [TSL NUM PIXELS] ,
unsigned char t s l p i x e l s 1 [TSL NUM PIXELS] ,
unsigned char t s l p i x e l s 2 [TSL NUM PIXELS] ,
unsigned int de l t a t , signed char s [REGIONS])

{
unsigned int i , j ;
signed long top sum [REGIONS] = {0 , 0 , 0} ,

bottom sum [REGIONS] = {0 , 0 , 0} ,
tmp [REGIONS] = {0 , 0 , 0} ;

signed char o ld s [REGIONS] = {0 , 0 , 0} ; // For low−pass f i l t e r

// Calcu late s
s [0] = op t i c f l ow (o l d t s l p i x e l s 0 , t s l p i x e l s 0) ;
s [1] = op t i c f l ow (o l d t s l p i x e l s 1 , t s l p i x e l s 1) ;
s [2] = op t i c f l ow (o l d t s l p i x e l s 2 , t s l p i x e l s 2) ;

// Low pass f i l t e r
f loat a = 0 . 8 ;
for (j = 0 ; j < REGIONS ; j++)

s [j] = (signed char) (a ∗ (f loat) s [j] + (1 . 0 f − a) ∗ (f loat) o ld s [j]) ;

tpm send number (1 , 1 , s [0]) ;
tpm send number (2 , 1 , s [1]) ;
tpm send number (3 , 1 , s [2]) ;

// Save s
for (j = 0 ; j < REGIONS ; j++)

o ld s [j] = s [j] ;
}

...

int main ()
{

// Compute d e l t a t
f loat d e l t a t = 4 . 5 ;
unsigned int delay = (unsigned int) d e l t a t ∗ MILLISEC ;

...

while (1)
{

6

...

// Grab images from cameras
image capture t ime = get t imer4 () ;
t s l g rab image same (t s l e x p o s i t i o n t ime , o l d t s l p i x e l s 0 , o l d t s l p i x e l s 1 ,

o l d t s l p i x e l s 2) ;
while (g e t t imer4 () < image capture t ime + delay) ; // Wait un t i l d e l t a t
t s l g rab image same (t s l e x p o s i t i o n t ime , t s l p i x e l s 0 , t s l p i x e l s 1 , t s l p i x e l s 2) ;

...

// Motor command
// Use the ”Control from monitor” checkbox in TP Monitor to contro l robot manually
i f (tpm read number (MODE) & 0b00000001)
{

motorspeed [0] = (signed int) tpm read number (MOTORLEFT) ∗ 10 ;
motorspeed [1] = (signed int) tpm read number (MOTORRIGHT) ∗ 10 ;
e s e t s p e e d l e f t (motorspeed [0]) ;
e s e t s p e e d r i g h t (motorspeed [1]) ;

}
else
{

// Get forward b ias from GUI
signed int b ia s = ((signed int) tpm read number (4)) ;

// Caculate t o t a l op t i c f low and low−pass f i l t e r i t
signed int d sum = (−(signed int) s [2] + (signed int) s [1]) ∗ 5 ;
sum = (8 ∗ sum + 2 ∗ d sum) /10 ;

// Get op t i c f low weight from GUI
signed int weight = (signed int) tpm read number (5) ;

// Set motor speeds
e s e t s p e e d l e f t (b i a s ∗10 − sum∗10 + weight ∗ ((signed int) s [2]) ∗ b ia s /40) ;
e s e t s p e e d r i g h t (b i a s ∗10 − sum∗10 − weight ∗ ((signed int) s [1]) ∗ b ia s /40) ;

}

...

}
}

7

