


1 Introduction

This report proudly presents the Franklin W. Olin Col-

lege of Engineering 2010 Intelligent Ground Vehicle Com-

petition entry: Athena. The vehicle attempts to increase

cognition rates and utilize alternative computing fabrics

while promoting systems level design thinking across the

vehicle's many technical domains. We believe that these

e�orts have resulted in an innovate design that contains

several elements novel to the IGVC. This design, as well

as the methodologies used to develop it, will be described

in the following report.

Figure 1: Photograph of Athena. Pictured is the Franklin
W. Olin College of Engineering 2010 IGVC entry. Athena
brings together several computing fabrics to implement a
true subsumptive architecture.

2 Team Organization

This year the team had two organizational goals: im-

proved project management and development of exter-

nal relationships. These two initiatives were led by the

team's Project Manager and the Director of New Tech-

nology Development. In order to track project progress,

adapt to lags in scheduling, and manage team funds, the

Project Manager developed a work breakdown structure

based on the technical performance requirements. The

work breakdown structure was then converted to a re-

source leveled critical path schedule. Each activity was

given value based on work hours to completion as esti-

mated by the team's subject matter expert. The project

manager then set an earned value baseline and tracked

the cost and schedule performance indices throughout the

project � submitting biweekly earned value progress re-

ports to the sponsoring faculty member. These reports

helped reform activity duration estimates and will serve

as a valuable data set for future project feasibility studies.

In addition to increasing the management and tracking

of technical goals, the team looked to establish relation-

ships with corporate partners while continuing to develop

our strong relationship with National Instruments. NI

has been a vital partner for our team's success and we

look forward to working with them in the future. With-

out our NI sbRIO and the LabVIEW FPGA, none of

our technical innovations would be possible. Addition-

ally, the close support of their on site liaison and remote

application engineers made for much shorter debugs and

a streamlined development process. In addition to our re-

newed partnership, we are happy to begin a partnership

with VectorNav Technologies. Their Attitude and Head-

ing Reference System uses an Extended Kalman Filter

to fuse data from a 3-axis accelerometer, 3-axis magne-

tometer, and 3-axis gyro at 200 Hz. This powerful sensor

is a critical part of this year's Navigation strategy, and

we are very grateful for VectorNav allowing us to show-

case their impressive hardware. Additional relationships

are currently being pursued with both Valde Systems and

Segway Robotics.

3 Design Process

The team started this year with a review of the 2009

IGVC competition, including video dissection, failure

analysis, and design process review. This led directly

to the technical requirements that drove many of this

year's innovations. Additionally, team members read
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robotic literature from both past IGVC competitors and

the robotics community. These inputs led to a several

high level goals for the season:

1. This year's vehicle platform should include truly

original design decisions that have the potential to

extend the knowledge base of the IGVC and general

robotics communities.

2. Cognition speed should be increased to allow the av-

erage e�ective operation velocity to exceed two miles

per hour.

3. Our design should extensively explore and utilize al-

ternate computing fabrics.

4. Our design should integrate seamlessly and expand

easily with extended vehicle capability.

Our team chose to explore and extend the subsumption

architecture purposed by Rodney Brooks. As a result,

our design process was a tightly coupled development and

test cycle with little to no vehicle simulation [3]. Individ-

ual behavioral models were developed incrementally and

fully debugged before moving onto creation of additional

behavioral modules. This was enabled by an agile soft-

ware development process that de�ned future behavior

requirements on the behaviors observed during testing.

The entire code base is hosted on a Google Code repos-

itory. In addition to helping our own development, we

hope that publicly hosting the code will encourage com-

munity innovation and extension of our own ideas. Thus,

our entire code base is shared publicly under then GNU

General Public License v3 code license.

Throughout our design process, we prioritized decisions

that created systems that would be easily integrated and

extended in the future. Robotics is by its very nature a

systems discipline. Successful robots must e�ciently dis-

tribute shared resources � such as power and data � while

also consolidating disparate inputs into a single, intelli-

gent action. Only through careful consideration of the

system design can a truly robust and expandable system

be created.

This year began with a complete rewiring of our vehi-

cle platform due in no small part to poor systems level

decisions made in the past. Recognition of the impor-

tance of systems level design caused our team to reex-

amine our overall vehicle strategy. This understanding

led to key redesigns that we will brie�y enumerated here

and discussed in greater detail later. These innovations

include compartmentalization of similar electrical com-

ponents into independently weatherproofed submodules

and common Ethernet interfaces for signal lines passed

between modules. Our computer architecture also inte-

grated more seamlessly with other robotic systems by in-

troducing a wider range of computing fabrics with more

expansive I/O capacities. Finally, even our software strat-

egy was targeted towards integration and future extension

of Athena. Our implementation of a modi�ed subsump-

tion architecture creates highly abstract, fully debugged

software modules that can be deployed by later develop-

ers who have no knowledge of the modules' original devel-

opment. Furthermore, these modules' design for FPGA

deployment make them expandable to a wide range of

di�erent FPGA targets.

In the following sections we will describe the imple-

mentation of these design principles: the vehicle Athena.

Athena strives to be a robust, expandable platform that

pushes the boundary of our own ability to create rapid

cognitive process.

4 Electrical Systems

This section discusses Athena's electrical systems. The

new capabilities of Athena's electrical systems create a

more robust, intuitive hardware structure, while still

managing to implement higher complexity level systems.

4.1 Actuation

Athena's primary actuator is a 24 V, 1.3 horsepower

brushed DC drive motor, reduced by a 2.5:1 sprocket-

chain drivetrain. Its power is delivered by a Curtis 1228

speed controller, which includes programmable on-board

acceleration pro�ling. Both this drive motor and the mo-

tor controller are native to the base vehicle, a Doran Elec-

tric Chimp� tricycle. This base platform was selected

based on its ample cargo space and stable three wheel

con�guration. The base vehicle is designed for paved
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and grassy environments, so additional mechanical adap-

tations to the original vehicle were limited to automation

of vehicle control. The location of a drive wheel in the

front of the vehicle makes Athena inherently stable on

uphill inclines. The center of mass of the vehicle, located

behind the drive wheel, acts to correct the direction of

motion. This model has been veri�ed by a notable de-

crease in vehicle performance when running backwards

uphill.

The steering actuator is a 24 V Pittman gear motor

with an integrated 500 CPR encoder, reduced by an in-

ternal 65.5:1 gearbox and an external 7:85 sprocket-chain

drive. This actuation scheme turns the front wheel, which

is also the primary drive wheel. The steering system is

therefore nonholonomic, unlike a vehicle with di�erential

steering that can drive on any path. While this adds an

additional burden to the software algorithms, path plan-

ning for nonholonomic vehicles is a primary research topic

for intelligent vehicles because of the inherent hardware

advantages of converting standard automobiles.

Figure 2: LIDAR Actuation Mechanism. The four bar
linkage oscillates the LIDAR angle and acts as a mechan-
ical safety mechanism. If the motor were connected di-
rectly to the LIDAR and began spinning uncontrollably,
the LIDAR would damage itself and its cabling.

We have an additional sensor actuator to tilt the front

LIDAR, which consists of another 24 V Pittman gear mo-

tor with an integrated 500 CPR encoder, reduced by an

internal 65.5:1 gearbox. This actuator is connected to the

LIDAR by a four bar linkage mechanism (Figure 2). The

four bar linkage is optimally suited for actuation over a

limited range of motion. Because the motor level arm is

less than half the length of the other arm, continuous ro-

tation of the motor will only bob the LIDAR head, rather

than turning the sensor into a hard stop or tangling the

cables. This mechanical safety mechanism ensures that

bugs in software development run no risk of sensor dam-

age. Both the steering and sensor actuators are powered

by Galil PWM servo ampli�ers. These motor controllers

are internally current limited.

4.2 Computation

Athena makes use of multiple computing fabrics to cre-

ate an architecture that maximizes the strengths of

traditional CPUs, real time controllers, and �eld pro-

grammable gate arrays (FPGAs). The result is a highly

parallelized, extendable, low cost robotic architecture.

Athena's processing is divided across a Dell laptop and a

National Instruments Single Board RIO (sbRIO) � which

itself contains a real time controller and Xilinx FPGA.

The laptop is a Dell Latitude E6400 with an Intel Core2

Duo 2.93GHz processor and an NVIDIA Quadro NVS

160M graphics processing unit. This PC runs LabVIEW

2009 for Robotics in a Window 7 environment. The NI

sbRIO-9642 runs the LabVIEW real time operating sys-

tem on a 400 MHz processor and contains a 2 million

gate Xilinx Spartan III 2000 FPGA. In addition to these

computing resources, the sbRIO has extensive I/O capa-

bilities. The board has 110 TTL digital I/O channels, 32

24 V logic digital I/O channels, 32 single ended analog

input channels, and 4 16-bit DACs for output. Addi-

tionally, the sbRIO provides four 5 V regulated power

supplies. These systems are both powered o� of a 24 V

regulated DC supply. The Latitude and sbRIO draw 4.6

amps and 1.8 amps, respectively.

This computing architecture empowers three important

innovations. First, the diverse range of computing envi-

ronments allows algorithms to be implemented in the en-

vironment that creates optimal performance. Addition-

ally, the extensive use of FPGA computing enables simul-

taneous data acquisition at rates many times faster than

Olin's 2009 vehicle. Finally, the architectures are easily

extended to accommodate future development.
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4.2.1 Optimized Environment

Diverse computing fabrics allow algorithms and �lters to

be implemented in a performance optimized environment.

This begins at each individual sensor input, where Athena

takes advantage of the FPGA to create several dedicated,

parallel processors which parse input streams, transform

data, and then react to this new data by updating the set

of possible future actions. FPGAs can run the �nite au-

tomata used to recognize sensor output strings, calculate

the repetitive math used for coordinate transforms, and

control the �nite state machines used for basic behaviors

with no overhead. Because a traditional CPU runs an

operating system whose scheduler must run these numer-

ous parallel processes through two cores, its overhead is

massive by comparison. On the other hand, many image

algorithms - which require large matrix operations and

a much higher degree of algorithmic complexity - per-

form much more e�ectively in a traditional PC. For this

reason, all of our vision processing is done on the Dell

laptop. Finally, the real time processor cannot compute

the volumes of data that a PC CPU can, but it provides

an environment where deterministic cognition can create

predictable behavior.

4.2.2 Increased Processing Speed

In addition to providing better performance, use of mul-

tiple computing fabrics allows Athena to move the hard-

ware abstraction boundary. Traditional robotic architec-

tures have a hardware/software interface at the level of a

string based API. In contrast, Athena's FPGA processing

cores convert sensor output into meaningful representa-

tions before the data is transferred into software. The

speci�cs of these interfaces and representations will be

discussed later in the software section.

This higher level of hardware abstraction also leads to

our second signi�cant innovation. Hardware implemen-

tation of parsing, conversion, and data processing dras-

tically increases the vehicle's overall processing rate. By

removing lower level processing from software, the FPGA

frees CPU cycles to be spent on higher level algorithms

and more intensive image processing. The speed gains

introduced by the FPGA can be seen in the handling of

the SICK LIDAR. Athena is able process LIDAR data

scans at 70 Hz while last year's vehicle, Brian, was only

able process scans at 10 Hz. This is a direct result of im-

plementing each sensor's processing in true parallel. The

increased data rates give Athena a more accurate view

of her environment and empowers faster decision mak-

ing. These high data rates combined with the oscillation

of the LIDAR also allow Athena to scan �ve di�erent

plains and create a three dimensional obstacle detection

sensor with a 15Hz update rate. This is one example

of how parallelizing data processing in hardware creates

a richer environmental awareness. Alternatively, this in-

creased speed could be used in a single plane to drasti-

cally reduce Athena's reaction time. Because the IGVC

navigation and autonomous courses are static and well

structured, the team has chosen increased spacial aware-

ness provided by oscillating LIDAR. Even with this trade

o�, the three dimensional obstacle scans update a rate

50% faster than the single-plane LIDAR data processing

from the 2009 vehicle.

4.2.3 Extendability

The �nal advantage of this architecture is that it is highly

extendable. In order to build more complicated robotic

systems, a code base must develop over time. To achieve

this, software teams must be able to preserve abstraction

barriers between code modules that have been previously

developed. This becomes challenging, however, if com-

puting occurs solely on CPUs. While software may not

require interaction with other code modules, parallel pro-

cesses must vie for the same, �nite number of cores. This

means that while you do not explicitly design interaction,

parallel threads and processes are managed by the oper-

ating system's scheduler. As a result, they will frequently

interact in ways that even developers who understand the

entire system cannot predict or comprehend. This prob-

lem is greatly reduced in the Athena architecture. Soft-

ware modules developed for the FPGA will function iden-

tically if they are placed in parallel with no processes or

thirty processes. It is true that resources are still �nite

and that if they run out, the code will fail to compile.

However, upon successful compilation, a developer will

know that a FPGA module will not interact with other
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Part Cost to Team Estimated Cost

Sony DFW-SX910 $0 $2090
SICK LMS291-S05 LIDAR $0 $6000
Doran Electric Vehicles Chimp� Human Transport* $0 $3195
Dell Latitude D620 $0 $2000
National Instruments 9642 sbRIO $0 $1200
u-blox Odometry Enabled GPS $0 $600
Galil MSA-12-80 Motor Controller (quantity 2) $0 $360
Pittman GM14904S016-R1Motor with Encoder $350 $350
Pittman GM9236S027-R1 $260 $260
Mechanical Emergency Stop Button (quantity 2) $240 $240
Autec Wireless Emergency Stop $0 $700
Aluminum Stock $180 $180
Encoder $0 $225
Fujinon DV3.4X3.8SA-1 Megapixel Lens $90 $90
Total $1,120 $17,490

Table 1: Cost Breakdown of Athena
*Includes two Chairman AGM-12100T Deep Cycle Lead Acid Batteries and one Curtis 1228 controller

modules as the two di�erent programs share no resources.

As a result, the developer can preserve a perfect abstrac-

tion barrier.

This improvement is not limited, however, to code

which is implemented on the FPGA. By removing pro-

cessing to the appropriate computing fabric, there is less

complexity in each environment. Domain speci�c experts

can program vision algorithms on a PC without having

to have to worry about preserving memory so that a LI-

DAR obstacle occupancy grid can maintain the proper

update rate. Even if the system must be extended to

include more computing on more processors, it can eas-

ily adapt. Because the architecture converts inputs into

useful representations before passing them across com-

puting fabrics, the communications between the various

processors (FPGA to CPU or RT processor) does not re-

quire transfer of large data volumes. These lighter weight

representations can thus transfer over relatively low rate

serial communication lines. In addition to the lower vol-

ume of data that is transferred, each module's ability to

process large volumes of data into lightweight representa-

tions at a high rate means that these representations can

be updated at a high frequency. As a result, lossy com-

munication is tolerable. An imperfect message can either

be ignored or replaced quickly by new information.

By not limiting Athena's intelligence to a single compu-

tational domain, we have created an architecture that op-

timizes algorithm performance to appropriate hardware,

processes more data, and can easily be extended in the

future. Not only does this computer architecture create

a competitive advantage, it does so without raising the

vehicle price tag. The cost of the current system is less

than deploying two parallel laptops. In the case of our

system, conversion to the multifabric architecture saved

$1100. Additionally, the system is not even near capac-

ity. At the current stage of development, we have utilized

only 38% of the FPGA's logic resources.

4.3 Sensing

Athena's sensor suite for the autonomous challenge con-

sists of a forward-facing, actuated SICK LIDAR for obsta-

cle detection and a statically mounted Sony DFW-SX910

color CCD camera with a wide-angle lens for line detec-

tion. Additionally, for the navigation challenge, we use

a VectorNav VN-100 Attitude Heading Reference System

and a u-blox GPS. The LIDAR is mounted as low as pos-

sible on the front of the vehicle for maximum e�ective

range, while the camera is located on the sensor mast

pointing down at 45°. Given the much faster data rates

enabled by FPGA processing, we can run the LIDAR at

70Hz; fast enough to enable three-dimensional LIDAR

scanning. Scanning multiple planes at high speeds allows

Athena to scan the entire driveable area for obstacles of
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all heights. This decreases the need for a global memory

representation. In our implementation, we select a range

of scanable angles between 6◦ and 33◦ from horizontal.

This allows us to see both tall and short obstacles, in-

cluding the lowest obstacle at the 2009 competition. The

faster Athena can sweep this 27 degree range, the faster

she can travel without hitting obstacles.

In order to oscillate the LIDAR, we implemented a clas-

sical feedback controller. This task was complicated by

the fact that the four bar linkage is a nonlinear system.

There is an angle dependent mechanical advantage be-

tween the two shafts. In addition, the LIDAR head has

a center of gravity above its point of rotation, so it gen-

erates a torque on the LIDAR shaft which is also angle

dependent. Using physics and geometry, we were able to

design two non-linear compensators to make the LIDAR

head system appear linear to its classical controller. The

entire controller, with both non-linear compensators and

the classical linear compensator, can run seamlessly on

the FPGA due to a custom multiplier sharing architec-

ture.

To explain the computed torque compensator, the force

of gravity acting on the LIDAR's center of mass exerts a

torque on the LIDAR head based on the sine of the angle

the center of mass makes with the vertical at the LIDAR

shaft. The computed torque compensator estimates the

motor current needed to counteract gravity and maintain

the current position. Using trigonometry we can derive

the relationship between angles φA and φB , which corre-

spond to the LIDAR and motor cranks respectively, and

thus correlate motor encoder readings to the angle of the

LIDAR center of mass, Figure 3 and (1) demonstrate this

relationship.


φA = π

2
− arcsin

(
B̄C sin(φB+π

2
)

C̄A

)
− arccos

(
C̄D2−ĀC2−ĀD2

2ĀCĀD

)
C̄A =

√
B̄C

2
+ ĀB

2
+ 2ĀBB̄C sin(φB)

(1)

This relationship assumes we start at a known motor

position. We handle dependence by setting φB = −π
2 be-

fore the robot turns on. This position was chosen because

it is both easy to �nd by the robot operator and because

Figure 3: LIDAR Control Diagram. This �gure shows
the basic setup for the LIDAR control problem. A is the
LIDAR shaft, B is the motor shaft, C and D are the
linkage joints.

the friction makes this a very stable position.

Our second non-linear compensator linearizes the me-

chanical advantage, the ratio of the marginal φb to φa

in terms of the point of interest Φa and Φb, where Φa is

calculated from Φb by way of (1).

φb

φa
=
ĀDĀB cos(Φa) + ĀDB̄C sin(Φa + Φb)

ĀBB̄C cos(Φb) − ĀDB̄C sin(Φa + Φb)
(2)

We can thus write the linear controller acting on an

error de�ned as the desired LIDAR position less the com-

puted position, and with an additional nonlinear gain

equal to the linearized ratio of φaφb . This gain is zero at the

starting point, so we add a small additional non-linearity

to allow the crank to return to an operating region.

With these two compensators in place, the plant will

appear to the classical controller as though it were just

a moment of inertia with friction, and the results of a

sine wave input will be very close to a sine wave output.

We decided on a lead compensator network maintaining

a phase margin of 45◦to limit overshoot, and maximizing

bandwidth. A quick tuning phase allows the operator to

oscillate the motor current at an adjustable frequency and

measure the magnitude and phase margin of the LIDAR

angle with the classical compensator in place. This is

done while live updating the classical controller's gains so

that it can be tuned to its maximum performance while

ful�lling its phase margin requirements.

The two non-linear compensators inevitably misesti-

mate to some degree and introduce noise into the sys-
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tem, but once a feedback control is applied, this noise

will becomes negligible. Since this year we are only oscil-

lating the LIDAR head, it may not have been necessary

to compensate the non-linearities in this manner, but this

control system will allow future versions of Athena to in-

telligently move the head with predictable results.

4.4 Major Electrical Innovations

Whenever one designs an electrical system, some degree of

compromise must be made between e�cient use of space

and ease of serviceability. This compromise is strongly

biased toward serviceability for prototype vehicles, as op-

posed to commercial vehicles where material optimiza-

tion directly a�ects performance. Given the added soft-

ware complexity of programming a FPGA and limited

manpower, we chose not to modify the basic structure of

the Chimp� vehicle platform. The Chimp� chassis has

proven to have ample space to allow for an electrical de-

sign optimized for organization, modularity, expandabil-

ity, and weatherproo�ng.

4.5 Power Distribution

Actuators generally have much higher current require-

ments than computing or sensing systems, meaning that

rapid changes in actuator motion can cause unwanted

transients in the power lines. This problem is solved in

Athena's power distribution system through the use of

additional power regulation systems for computing and

sensing electrical components. In addition, kill switches

on the front and back of the robot only cut power to

actuators, allowing Athena's computation systems and

more sensitive components to continue normal operation.

These constraints are traditionally di�cult to wire e�-

ciently in a small, mobile system given the spatial re-

quirements of di�erent components. Last year's electrical

system encountered this problem; the slowly expanding

wiring scheme eventually became an unserviceable tangle.

Athena's power distribution system is both organization-

ally advantageous and expandable.

In Athena's electrical system, all actuators and their

associated controllers are powered through a contained,

kill switch enabled electrical system, while the compu-

tational and sensing systems are housed in an isolated,

regulated electrical system with a direct connection to

Athena's batteries through the main on/o� switch. A

simpli�ed wiring diagram is shown in Figure 4.

Figure 4: Simpli�ed Wiring Diagram. The power is dis-
tributed from the batteries to two separate subsystems,
one with multiple kill switches and one with a regula-
tor. These two systems house the actuation and cogni-
tion/sensing systems respectively.

The primary advantage for such a system is its inherent

modularity. Each subsystem can be powered o� a single

fused power distribution block, making the system as a

whole highly expandable and compartmentalized, short-

ening the debugging cycle. The two power subsystems are

also highly analogous, allowing for recurring use of paral-

lel components. The spatial layout of such a subdivided

power system has additional advantages.

4.6 Electrical Layout and Waterproo�ng

The power distribution strategy allowed us to spatially

divide the electrical system into two waterproof enclo-

sures, one for regulated power components and one for

unregulated and E-stop controlled components. The un-

regulated box contains all motor controllers, powered di-

rectly from the batteries via the E-stops (Figure 5). The

regulated box contains the computational and sensing

components, such as the sbRIO and u-blox GPS. The

power distribution systems for each box are completely

isolated. Signal lines from each individual sensor are com-

bined into Ethernet cables to provide a standard interface,

decrease the number of wires to be routed, and provide

easy connection at module boundaries. As a result, all

cross-communication takes place over waterproof Ether-
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net, FireWire, and serial cables, so no terminals are ex-

posed to the elements. The weather sensitive components

of the electrical system are thereby individually water-

proof, thereby avoiding the much more complex problem

of creating an entirely sealed vehicle chassis. The other

sensors not in the waterproof enclosures are spatially lo-

cated for optimal sensor range. These sensors are enclosed

in their own custom waterproo�ng enclosures.

Figure 5: Unregulated Power Electronics Box. This wa-
terproof box, one of two boxes on the vehicle, houses the
actuation electronics. Note the ease of service and room
for expansion made possible by the organizational tech-
nique.

5 Software Systems

5.1 Software Architecture

As discussed, Athena's computation is spread across three

di�erent processors: an FPGA, a real time processor, and

a PC. Each of these processing units performs a unique

role. Figure 6 shows a high level breakdown of software

modules. On the FPGA, there are several truly parallel

processes that parse and interpret the input data from

various high data rate sensors. These inputs are then

passed through a series of �nite state machines to create

a set of possible vehicle behaviors. The PC is used primar-

ily for image processing. Vision algorithms identify lines

for the purpose of avoidance and for destination genera-

tion. The PC also hosts the GPS because this low data

rate sensor has a National Instruments PC-hosted code

module. Finally, the RT processor selects the behavior

which optimally achieves the goal generated by the vision

processing. These operations will now be described in

greater detail.

Figure 6: Athena's Software Architecture. The diagram
shows which behaviors and algorithms are hosted on what
processors.

5.2 FPGA-Hosted Computation

The FPGA hosted `software' performs three important

operations: sensor parsing, data transformation, and be-

havior generation.

5.2.1 Sensor Parsing

Each sensor's input stream is parsed with either a dis-

crete �nite automata (DFA) or a push down automata

(PDA), depending on the demands of the parser. Each

sensor input is not bu�ered. Instead, DFAs and PDAs

parse input strings byte by byte as they are acquired. An

example of a PDA modeled parser can be seen in Figure

7.

This PDA is used to recognize the two state

strings output by the VectorNav: a reset acknowl-

edge and a data stream. These strings take the

form of �$VNRRG,<x quaternion>,<y quaternion>,<z

quaternion>,<quaternion scalar>,<x acceleration>,<y

acceleration>,<z acceleration>,<x magnetic force>,<y
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Figure 7: VectorNav Push Down Automata. Each tran-
sition is labeled with a 2-tuple, where the �rst element is
the input that generates that transition and the second is
the character written to the stack (`' denotes no charac-
ter being written). I is the input character and E is used
to denote a transition which is taken regardless of input.
Unlabeled transition are taken if the input character does
not match and labeled transitions.

magnetic force>,<z magnetic force>*<checksum>� or

�$VNRST*<checksum>� where each bracketed element

represents �xed point numeric data. Each time the PDA

enters the q12 accept state, a reset �ag is set acknowl-

edging the VectorNav's state. In order to read the data

passed to the FPGA in the VNRRG command once the

PDA enters the q8 state, the string that is received is

pushed onto the stack until that data element is done be-

ing input (as is indicated by the comma delimiter). Then,

when the PDA enters the q9 accept state, the stack is

�ushed and its data is written to a global variable which

corresponds to that data element. The correct data ele-

ment to write to is tracked by another DFA, which moni-

tors the parsing PDA's state. Each input is tracked with a

similar custom core that implements sensor output stream

parsing in hardware. Many of the resulting PDA and DFA

recognizers are much more complicated, but the same ba-

sic approach is applied.

While string parsing of sensor data streams is not usu-

ally detailed in robotic design reports, the approach de-

tailed above allows a few key advantages, and is thus

important. The use of PDA and DFA recognizers al-

low unbu�ered input to be parsed. As with later stages

of FPGA processing, Athena's sensor data acquisition is

done without the formation of intermediate representa-

tions. Instead, each character is immediately translated

into a meaningful representation. This speeds data pro-

cessing by eliminating overhead. These parsers are also

robust in the face of data loss.

5.2.2 Data Transformation

After the parsers recognize strings and turn them into

measurements, these measurements are then immediately

placed into Athena's local coordinate frame. This con-

verts LIDAR data into Cartesian inches centered about

the vehicle's LIDAR head, LIDAR tilt angle and steering

wheel angle into degrees, VectorNav heading into compass

degrees, and robot velocity in inches per second. Again,

this processing is done without bu�ering or intermediate

representations. Transformed data is then immediately

passed to the relevant behavior generation module.

5.2.3 Behavior Generation

Once data is parsed and transformed it is immediately

passed to parallel behavior generation modules. The pri-

mary behavior system is based on an obstacle and line

avoidance algorithm successfully implemented by Virgina

Tech's 2007 IGVC vehicle, Johnny-5 [5]. The algorithm,

summarized in Figure 8, examines 18 possible circular

paths corresponding to di�erent front wheel angle posi-

tions.

Figure 8: Drivable Paths Algorithm. The algorithm gen-
erates a set of 18 possible behaviors in the form of a dis-
tance driven along 18 arcs, corresponding to 18 possible
wheel angles.

Each path is then shortened to the length that can
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be driven before an obstacle is encountered. In our im-

plementation of this algorithm, each time an obstacle is

identi�ed, its location is checked relative to each path.

If at any point along that path, the obstacle is closer

than a tunable passing distance, then the path is short-

ened to length where the path is no longer passable. This

algorithm is implemented on the FPGA using the state

machine shown in 9.

Figure 9: Behavior State Machine. The state machine
which is used to generate a set of possible drive behaviors
(ε transitions are taken regardless of sensor state deci-
sion).

Data to update path lengths based on detected lines is

provided by a serial connection which directly connects

the FPGA to the PC. This connection transmits the lo-

cation of points which represent 3 inch squares deemed to

be the color of lines. Data for the obstacle path lengths

is provided by the output of the LIDAR data stream and

transform.

In order to update LIDAR scans at 70Hz, the FPGA

must be able to process the e�ect of a data point on each

of our 18 parallel paths 12,600 times per second. Each

path, in turn requires 112 inches of travel to be examined

for collisions. The necessary data rate is achieved by cre-

ating custom parallel processors to evaluate each path.

Both the line path evaluation and obstacle path evalua-

tion have their own cores, each of which have two parallel

path evaluation processors � one for left paths and one

for right paths.

Other behavior modules create robot motivation. An

�avoid explored areas� behavior tracks a trailing average

of vehicle position based of integration of VectorNav out-

put. This in turn gives a heading which corresponds to

the least explored area of the vehicle environment. An-

other useful motivating behavior is the �prefer constant

heading� behavior. This creates a trailing average of ve-

hicle heading. Both of these behaviors provide Athena

with a useful, lightweight representation of past vehicle

action which can be an accurate predictor of appropriate

future action.

All of these behavior modules are then fused using

a modi�ed subsumption architecture. Subsumption ar-

chitectures combine behavior modules like the ones de-

scribed above by layering behaviors into a hierarchy [1].

These behaviors are then blended using subsumption

functions. In our architecture, these functions are hosted

on the real time processor, and thus, will be discussed in

the real time processor section.

5.3 PC

The previous section discussed how data received from

sensors and PC based image processing is turned into a

set of potential robot behaviors. This section outlines

how image processing is implemented so that data can be

turned into behaviors. Additionally, this section outlines

how vision is used to create a goal for Athena. This goal

will later be used to judge the relative merit of the many

available behavior sets and combinations.

5.3.1 Vision Overview

The vision software on Athena follows the theme of modu-

lar design, adaptability, and optimization present in other

subsystems and software branches. Athena captures live

images using a Sony DFW-SX910 equipped with a Fuji-

non 3.4mm wide-angle lens mounted on the static sensor

mount of the vehicle. The live images are then trans-

formed onto a 2D plane in front of the robot and cor-

rected for nonlinear distortion (as de�ned by a previously

acquired calibration template). This transformed image

� ideally, an �overhead� view � is then made available

to a series of �lters which extract lines and/or obstacles.

The �lters include standard and adaptive RGB and HSL
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Figure 10: Vision Processing Flowchart. A �owchart showing the vision processing algorithm from the image capture
to goal extraction and obstacle identi�cation.

�lters, along with a pattern-matching �lter based on an

arti�cial neural network. The binary image results can

then put through a series of particle �lters to �lter for ob-

ject size and width. The �nal line-�ltered image is then

downsized, and the x and y coordinates of lines are passed

to the same FPGA-based obstacle avoidance and path-

planning algorithms used with LIDAR data. Finally, a

Hough transform is taken of the image data which allows

the robot to detect the presence and consistency of lines

and extract a goal from this. Figure 10 diagrams the

overall process.

5.3.2 Image Calibration

Image calibration allows us to remap pixels to real-world

coordinates. The calibration process analyzes a prere-

corded image of a grid of dots with a known spacing and

resizes the image such that the grid is spatially correct.

Given the information from this transformation, other im-

ages can also be corrected. We use this method to trans-

form the camera image to a top-down view, compensate

for the �sheye e�ects of wide-angle lenses, and �nd the

location of lines in real-world units. Figure 11 corrections

on the calibration template.

5.3.3 Filters

A wide array of image �lters have been created and imple-

mented on Athena. Because lighting conditions can vary

greatly between environments, each �lter can be selected

and tuned for a given test. Filters include basic RGB and

HSL �lters, adaptive versions of these �lters that account

for varying lighting conditions, and an arti�cial neural

network pattern-matching �lter. Particle �lters are then

Figure 11: Correcting For Nonlinear Distortion. Image a)
shows a calibration image from the wide angle lens before
correction and b) shows the same image after transforma-
tion.

applied to the binary images to reduce noise and extract

articles of interest. Line width and area �lters are par-

ticularly e�ective. The �nal �ltered image is then resized

to reduce the obstacle density, and the x, y coordinates

of the lines are passed to the FPGA using RS232. The

drivable paths algorithm is then run on this data to avoid

lines.

5.3.4 Goal Orientation

Once the solid lines have been �ltered out of an image,

a Hough transform is taken of the data to identify the

strongest lines. The slope of these lines, if deemed good

enough �ts, are used to determine the desired heading.

Because we are using a wide-angle lens, we can guarantee

that we will see past small gaps lines and will often see

both sides of the course. An e�ective Hough transform

can ensure that the desired heading remains correct even

when there are gaps in lines.
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Figure 12: Vision Processing Example. Image a) shows
the raw camera output, b) shows the same image after
calibration, c) shows the lines extracted with an adaptive
RGB and particle �lters, and d) shows the resized image
passed to the FPGA to calculate drivable paths.

5.3.5 Navigation

Athena's localization and global navigation system is

composed of an u-blox series 5 GPS and a VectorNav-

100T Attitude and Heading Reference System (AHRS).

A low-accuracy localization unit, the u-blox GPS pro-

vides readings of a global position to within three meters

of the true location, at a rate of one reading per second.

At one hertz, the data rate is low enough to negate sim-

ple averaging as a method of increasing the accuracy of

global position measurements and improving global way-

point �nding and navigation.

Our solution to combating this de�ciency in localiza-

tion takes a macro to micro approach. We use the u-blox

GPS to guide Athena to the area roughly around a des-

ignated GPS target coordinate. Combining the current

GPS coordinates with a compass heading from the Vec-

torNav, our navigation algorithm provides Athena with

a preferable path upon which to drive to the target loca-

tion. Once in range, the control system ignores further

information from the GPS, and executes a circular search

pattern, reaching the target position at some point in

its path. To ensure that Athena does not wander from

the speci�ed search pattern, IMU measurements from the

VectorNav AHRS keep Athena aware of her position rel-

ative to the start of the search pattern. This allows us

to fully cover the area in which we know the target lo-

cation to be. Athena's navigation system is simple in

structure and implementation, but it provides a solution

to the problem of global waypoint �nding and navigation

using only low-cost sensors and simple algorithms.

5.4 Real Time Processor

As discussed in the previous section, data from the sensors

and the PC image processing is converted into a set of pos-

sible behaviors by the FPGA. These behaviors are then

organized into a subsumptive architecture. The subsump-

tion functions which allow these behaviors to interact are

hosted on the real time processor. In the original sub-

sumptive architecture proposed by Rodney Brooks layers

the set of behavior generating modules into a hierarchy.

The architecture then allows ranking behaviors to modify

the inputs and outputs of lower level behaviors. Tradi-

tionally, this override behavior is managed by a series of

static subsumption functions, which take in inputs from

ranking and subservient behaviors and allow the output

of the dominate behavior to choose how the inputs are

blended or overridden. This enforces a rigid hierarchy in

which each behavior is always either subservient or dom-

inate over another behavior. Athena uses the real time

processor to create a more �exible hierarchy.

Athena's subsumption functions blend �ve di�erent be-

haviors: avoid obstacles, avoid lines, move towards goal

point, prefer similar heading, and avoid explored areas.

In di�erent contexts, Athena's architecture will allow a

behavior to override the same behavior it submitted to

just moments ago. This is based o� of an assertiveness

asserted by each behavior. If the Hough transform of the

image processing has strong correlation, it will assert its

goal behavior more. Similarly, if there is a high standard

deviation to the prefer similar heading's trailing average,

it is less likely to assert dominance over other behaviors.

This �exible hierarchy allows us to leverage the advan-

tages of subsumption while also empowering very di�er-

ent behavior sets for the courses many contexts (solid

versus dashed lines or sparse versus dense obstacle envi-

ronments).

12



5.5 Software Innovation

We believe that the team's software strategy is novel

to the Intelligent Ground Vehicle's Competition. While

in the past other successful teams have used subsump-

tion to moderate between a smaller set of behaviors, [5]

we believe that no one has been able to implement be-

havior generation modules as truly parallel, independent

processes as we have on Athena's FPGA. In fact, with

the exception of an implementation of a three behavior

FPGA simulation done by researchers at Chulalongkorn

University [6] and a RC car controlled by a 256 gate pro-

grammable logic chip created by Rodney Brooks [4] it

appears as though this approach is relatively novel in the

greater robotics community.

However, innovation requires more than novelty; an in-

novative approach must be selected on a belief that it will

yield better outcomes. We believe that a reactive sub-

sumption behavior is in its own right well suited to the

IGVC. The inability to store prior knowledge means that

a robot's world models must be constructed while the ve-

hicle explores its environment. While not an intractably

hard problem, implementing SLAM on an IGVC vehicle

would prove very challenging. The high hardware cost

(both in sensors and computation) and extensive develop-

ment time to create a vehicle capable of constructing such

a world model again seems to indicate that an abstract

model based approach may not be appropriate. This is

particularly true given the relatively short distances trav-

eled by IGVC vehicles. This short distance means that

optimal path solutions yield little improvement from sim-

pler reactive navigation behaviors. However, just as we

must select the proper computational environment to run

algorithms, we also must select algorithms that are well

suited to our robot's environment.

This is the basis upon which our team was drawn to

subsumption. However, our software strategy does not

simply implement a previously postulated architecture.

It solves two key problems of subsumption by creating

truly parallel behavior modules and allowing for more

�exible blending of these modules. Even though sub-

sumption architectures were theorized as a composition

of parallel, �nite state machine modeled behaviors, this

was not how they were initially implemented. In prac-

tice, Rodney Brooks robots were frequently controlled by

single core Lisp machines which simulated �nite state ma-

chines [2]. Having to be tethered to a computer presents

obvious complications for the practical operation of such

robots. Not only does our software strategy break that

cord, it also enables behaviors to be implemented in par-

allel as true state machines. In addition to helping ad-

vance the theorized parallelism of subsumptive architec-

tures, our software allows for �exible adaptation to the

IGVC courses di�ering environments, rather than follow-

ing Brooks rigid architecture.

6 Performance

Athena is based on the Chimp� platform by Doran Elec-

tric Vehicles. This personal transportation vehicle (PTV)

is designed to carry a 300 pound rider at 11 mph on a �at

surface. The additional electric and mechanical systems

on Athena total less than 100 pounds. Therefore, we

expect performance well within the base vehicle's speci-

�cations. In our testing, we have never been limited by

the overall power and speed of the base vehicle.

Our 2009 competition entry, Brian, used the same base

platform and fared quite well in the Autonomous Chal-

lenge. It was, however, limited by its e�ective speed and

ability to distinguish gaps in lines. Through a better mo-

tor control algorithm and enhanced machine vision capa-

bilities, we were able to eliminate some of these downfalls.

At competition, Brian showed choppy motion and uneven

travel speeds that resulted in an average rate of 0.5 mph.

It also tended to oscillate between lines, a known lim-

itation of potential �eld algorithms in narrow corridors

[7]. Athena, on the other hand, has a more consistent

and �uid motion as de�ned by our drivable paths algo-

rithm. Initial tests show an average operating speed of

3 mph. We have also made several improvements to the

machine vision capabilities of our robot. Athena uses a

wide angle lens that provides a visible range of 25 ft and a

usable horizontal range of 30 ft. This allows us to always

have lines in view from which we can extract a desired

travel direction. This increased viewable area along with

our advanced �lters should allow us to quickly and easily

identify lines and desired paths through the course.
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Brian (2009 entry) Athena (2010 entry)
Metric Competition Performance Predicted Actual

Cognition Performance Metrics

Line Avoidance Reaction Time 0.1 s 0.067 s 0.067 s
Obstacle Avoidance Reaction Time 0.1 s 0.014 s 0.014 s
Localization Update Rate 2 Hz 50 Hz 50 Hz

Sensor Performance Metrics

LIDAR 2D Update Rate 10 Hz 70 Hz 70 Hz
LIDAR 3D Update Rate N/A 15 Hz 15 Hz
Obstacle Detection Range 9 ft 22 ft 22 ft
Line Detection Range 12 ft 23 ft 25 ft
Heading Update Rate 2 Hz 50 Hz 50 Hz
GPS Watch Circle 3 m 3 m 3 m

Vehicle Performance Metrics

Top Speed 4.5 mph 4.5 mph 4.5 mph
Average Operating Speed 0.5 mph 3 mph 3 mph
Ramp Climbing Ability 15% grade 15% grade 15% grade
Running Battery Life 1.8 h 1.8 h 1.9 h
Standby Battery Life 10 h 14 h 16 h

Table 2: Performance Metrics

We also expect major improvements in the Navigation

Challenge. In 2009, we only reached a single waypoint due

to our inability to establish a reliable heading. Athena in-

corporates a new VectorNav Attitude Heading Reference

System that provides �ltered heading data for the robot.

With this information, we can now accurately calculate

our desired path to the waypoints.

Athena is capable of real-time obstacle avoidance,

meaning that it can avoid obstacles even in a dynamic

environment. The LIDAR can detect obstacles at a dis-

tance of 22 ft at a rate of 70 Hz. Because the course only

includes static obstacles, we have opted to take a 3D scan

of the environment by oscillating the LIDAR head. These

scans are accomplished at 15 Hz, which is still faster than

the update rate on our 2009 vehicle.

7 Conclusion

Athena represents a clear and already proven improve-

ment over the team's 2009 entry. Athena's novel use of

FPGAs and hardware abstraction has allowed the Olin

team to reduce Athena's line avoidance reaction time by

a third and the obstacle avoidance reaction time by an or-

der of magnitude. Higher processing speeds coupled with

LIDAR pitch control has more than doubled Athena's ef-

fective obstacle avoidance range to twenty two feet. Sim-

ilar improvements in lens selection and image processing

have increased the line detection range to twenty feet.

The result is a vehicle whose 3 mile per hour average

speed has far surpassed our original goal. We believe that

Athena's architectures also represent careful systems de-

sign, a innovative use of alternative computing fabrics,

and novel approach to the IGVC. However, the ultimate

proof of these methods will be her performance at com-

petition. The Olin College Ground Robotics Engineering

group proudly presents the college's 2010 IGVC entry,

Athena.
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