
Control of a Modular Fish Robot

Raphaël Cherney Frédéric Wilhelm

May 14, 2012

1 Introduction

For this exercise, we learned how to program and control a modular, robotic fish. The
boxfish-like robot is built using 3 modules from the Salamandra robotica II platform
(Figure 1): a passive head, a midsection with pectoral fins, and a tail. Each module is
completely independent with its own motor, microcontroller, and battery. They can be
assembled into many possible configurations, a subset of which are shown in Figure 2.

Figure 1: Salamandra robotica II modular robot (Crespi 2011)

Figure 2: Possible configurations using modules (Crespi 2007)

1

The configuration of our fish robot with 4 degrees of freedom is shown in Figure 3. The
head module is not actuated, but contains a wireless radio link to an off-board computer.
We can wireless reprogram the head module and can communicate in realtime with the
robot by writing to registers in the head module. More specifics on the hardware can
be found in [1, 2]. This report contains a detailed description of the code we used to
get started with the robot and a series of experiments taken while swimming (jump to
section 9 on page 11 for swimming experiments).

Figure 3: Configuration of fish robot (adapted from Crespi)

2 Programming the robot

In order to get started with the platform, we began with a simple program that cycles
the color of the LED on the head module. The code is shown below:

1 int main (void)

2 {

3 int8_t i ;

4

5 hardware_init () ;

6 reg32_table [REG32_LED] = LED_MANUAL;

7

8 // manual LED control
9 while (1) {

10 for (i = 0 ; i < 127 ; i++) {

11 set_rgb (i , 0 , 0) ;

12 pause (TEN_MS) ;

13 }

14 for (i = 0 ; i < 127 ; i++) {

15 set_rgb (127 , i , 0) ;

16 pause (TEN_MS) ;

17 }

18 for (i = 0 ; i < 127 ; i++) {

19 set_rgb (127 , 127 , i) ;

20 pause (TEN_MS) ;

21 }

22 for (i = 127 ; i >= 0 ; i−−) {

23 set_rgb (i , 127 , 127) ;

24 pause (TEN_MS) ;

25 }

26 for (i = 127 ; i >= 0 ; i−−) {

27 set_rgb (0 , i , 127) ;

28 pause (TEN_MS) ;

29 }

30 for (i = 127 ; i >= 0 ; i−−) {

31 set_rgb (0 , 0 , i) ;

32 pause (TEN_MS) ;

33 }

2

34 }

35 return 0 ;

36 }

This program causes the light to progressively get more green, shift to yellow, white,
cyan, blue, and then turn off before repeating the cycle. A ten millisecond pause in
each for loop slows the transitions to make them visible (each transition then takes
approximately 0.01 ∗ 127 = 1.27 seconds). Using this understanding of how to control
the LED, we made the following, simple program to blink the LED green at 1 Hz:

1 int main (void)

2 {

3 int8_t i ;

4

5 hardware_init () ;

6 reg32_table [REG32_LED] = LED_MANUAL;

7

8 while (1) {

9 // Blink green at 1 Hz
10 set_rgb (0 , 127 , 0) ;

11 pause (ONE_SEC/2) ;

12 set_rgb (0 , 0 , 0) ;

13 pause (ONE_SEC/2) ;

14 }

15 return 0 ;

16 }

3 Sending and receiving data

In order to communicate with the robot, the computer wirelessly reads and writes var-
ious registers in the head module’s microcontroller. The robot then handles associated
commands in an interrupt service routine (ISR). We use a special register callback func-
tion to handle our custom commands. We were given the following example register
handler function with several specialized commands:

1 // I n i t i a l i z e var iab les
2 stat ic uint32_t datavar = 0 ;

3 stat ic uint8_t last_mb_size = 0 ;

4 stat ic uint8_t counter = 0 ;

5 stat ic uint8_t mb_buffer [MAX_MB_SIZE] ;

6

7 // Register ca l l back function , handles some new reg i s t e r s on the radio .
8 stat ic int8_t r eg i s t e r_hand l e r (uint8_t operat ion , uint8_t address , RadioData∗ radio_data)

9 {

10 uint8_t i ;

11

12 switch (operat ion)

13 {

14 case ROP_READ_8:

15 i f (address == 6) {

16 radio_data−>byte = counter ;

17 counter = 0 ;

18 return TRUE;

19 } else i f (address == 21) {

20 counter++;

21 radio_data−>byte = 42 ;

22 return TRUE;

23 }

24 break ;

25 case ROP_READ_32:

26 i f (address == 2) {

27 radio_data−>dword = datavar ;

28 return TRUE;

29 }

30 break ;

31 case ROP_READ_MB:

32 i f (address == 2) {

33 radio_data−>mult ibyte . s i z e = last_mb_size ;

34 for (i = 0 ; i < last_mb_size ; i++) {

35 radio_data−>mult ibyte . data [i] = mb_buffer [i] ;

3

36 }

37 return TRUE;

38 }

39 break ;

40 case ROP_WRITE_8:

41 i f (address >= 2 && address <= 4) {

42 mb_buffer [address − 2] = radio_data−>byte ;

43 return TRUE;

44 }

45 case ROP_WRITE_16:

46 i f (address == 7) {

47 datavar = (datavar ∗ 2) + radio_data−>word ;

48 return TRUE;

49 }

50 break ;

51 case ROP_WRITE_MB:

52 i f (address == 2) {

53 last_mb_size = radio_data−>mult ibyte . s i z e ;

54 for (i = 0 ; i < last_mb_size ; i++) {

55 mb_buffer [i] = radio_data−>mult ibyte . data [i] + 1 ;

56 }

57 return TRUE;

58 }

59 break ;

60 }

61 return FALSE;

62 }

What the handler function will do is dependent on the register type (8-bit byte, 16-bit
word, 32-bit dword, or multibyte), address (between 0 and 255 for each type), and
operation (read or write). Since all of the commands are initiated by the computer,
the result depends on the program being run on the PC. Our communication demo
connects to the robot through the wireless radio and then runs the following function:

1 void r e ad_reg i s t e r s (CRemoteRegs& regs)

2 {

3 cout << "get_reg_b (6) ��=�" << (int) r eg s . get_reg_b (6) << endl ;

4 cout << "get_reg_b (21) �=�" << (int) r eg s . get_reg_b (21) << endl ;

5 cout << "get_reg_b (21) �=�" << (int) r eg s . get_reg_b (21) << endl ;

6 cout << "get_reg_b (6) ��=�" << (int) r eg s . get_reg_b (6) << endl ;

7 cout << "get_reg_b (6) ��=�" << (int) r eg s . get_reg_b (6) << endl ;

8

9 cout << "get_reg_mb (2) �=�" ;

10 d i sp lay_mult ibyte_reg i s t e r (regs , 2) ;

11

12 uint8_t bu f f e r [8] ;

13 for (int i (0) ; i < 8 ; i++) {

14 bu f f e r [i] = 100 + i ;

15 }

16 reg s . set_reg_mb (2 , bu f f e r , s izeof (bu f f e r)) ;

17

18 cout << "get_reg_mb (2) �=�" ;

19 d i sp lay_mult ibyte_reg i s t e r (regs , 2) ;

20

21 reg s . set_reg_b (2 , 111) ;

22 r eg s . set_reg_b (3 , 222) ;

23

24 cout << "get_reg_mb (2) �=�" ;

25 d i sp lay_mult ibyte_reg i s t e r (regs , 2) ;

26

27 reg s . set_reg_w (7 , 3447) ;

28 cout << "get_reg_dw (2) �=�" << regs . get_reg_dw (2) << endl ;

29 r eg s . set_reg_w (7 , 1234) ;

30 cout << "get_reg_dw (2) �=�" << regs . get_reg_dw (2) << endl ;

31 }

After understanding the code, we ran the program with the following result:
1 get_reg_b (6) = 0

2 get_reg_b (21) = 42

3 get_reg_b (21) = 42

4 get_reg_b (6) = 2

5 get_reg_b (6) = 0

6 get_reg_mb (2) = 0 bytes :

7 get_reg_mb (2) = 8 bytes : 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108

8 get_reg_mb (2) = 8 bytes : 111 , 222 , 103 , 104 , 105 , 106 , 107 , 108

9 get_reg_dw (2) = 3447

10 get_reg_dw (2) = 8128

4

Using this, we can verify our understanding. The computer begins by requesting the
byte at address 6. This causes the robot to send back the value of counter which had
previously been set to zero and assigns counter = 0. Next, the computer requests
the byte at address 21. This increments the counter and returns the value 42. The
computer then requests byte 21 again, causing the counter increment again. This time,
when the computer sends the “read byte register 6 operation” it returns the updated
counter value of two and resets the value to zero. The following read command just
shows that the counter had been reset to zero.

Next we try reading the multibyte register 2. This returns value of last_mb_size (which
corresponds to the the number of bytes to consider in mb_buffer) and returns the data
from mb_buffer. In this case, last_mb_size has been initialized to zero, so it simply
returns this value with no more data. Next the computer creates the array buffer[8] =
{100, 101, 102, 103, 104, 105, 106, 107} and sends a multibyte write command with
this data (address = 2). Logically, we would expect the the data from buffer[8] on the
computer to be written to mb_buffer on the microcontroller, but careful inspection of
our handler function shows that we actually write each data element + 1 to mb_buffer.
This causes the values 101 though 108 to be returned when we send the multibyte read
2 command. Next the computer sends the write byte command with an address of 2
and value of 111. The handler function when address = 2 writes the incoming data to
mb_buffer[address - 2] (i.e. mb_buffer[0] = 0). Similarly, the computer then writes 222
to mb_buffer[1] (since address = 3 in that case). Next we read the multibyte register
(which now has a length of 8) and see that the first two components have changed, but
the rest remains the same.

Finally, we try sending a word (16-bits) to the robot with an address of 7 and value of
3447. The address tells the robot to make datavar = (datavar * 2) + new value, which
in this case, makes datavar = (0 * 2) + 3447 = 3447. We can tell that the value has
changed by sending the read dword command with address 2, which returns the value of
datavar. When we do the same thing again with the new value of 1234, we get datavar
= (2 * 3447) + 1234 = 8128 (which we again read out with the read dword command).
We got the results that we were expecting (though the multibyte writing command
with +1 is rather illogical), showing that we understood what the code was doing.
From there, we could create our own commands in the register read/write handler.

4 Communication between elements

So far, we have only sent commands to the head module (where the radio is). In order
to communicate with the other elements of our modular robot, we use a 1 Mbps CAN
bus. Using a custom protocol similar to the wireless connection, the head can read and
write registers in the body elements. As an example, we programmed the robot to read
the position from one of the body segments and adjust the color of the LED on the
head according to the measurement. The following code snippet shows the main loop:

5

1 while (1) {

2 pos = bus_get (MOTOR_ADDR, MREG_POSITION) ;

3 i f (pos > 0) {

4 set_rgb (pos , 32 , 0) ;

5 } else {

6 pos = −pos ;

7 set_rgb (0 , 32 , pos) ;

8 }

9 }

When the element is at the zero position, the LED is green. The color will shift to
yellow as the measurement increases and turns more cyan as the angle measurement
decreases. With this ability to communicate with other segments, we implemented a
program to read back the positions of each degree of freedom and display it on the
computer. The robot gets the motor positions continuously and sends the values when
requested by the PC. The robot code is as follows:

1 #include "hardware . h"

2 #include "module . h"

3 #include " robot . h"

4 #include " r e g i s t e r s . h"

5 #include <s t r i n g . h>

6

7 #define NUM_MOTORS 4

8 const uint8_t MOTOR_ADDR[NUM_MOTORS] = {72 , 73 , 74 , 21} ;

9

10 // Motor posi t ions
11 uint8_t pos [NUM_MOTORS] = {0 , 0 , 0 , 0} ;

12

13 stat ic int8_t r eg i s t e r_hand l e r (uint8_t operat ion , uint8_t address , RadioData∗ radio_data)

14 {

15 switch (operat ion)

16 {

17 case ROP_READ_MB:

18 i f (address == 0) {

19 radio_data−>mult ibyte . s i z e = NUM_MOTORS;

20 memcpy(radio_data−>mult ibyte . data , pos , NUM_MOTORS) ;

21 return TRUE;

22 }

23 break ;

24 }

25 return FALSE;

26 }

27

28 int main (void)

29 {

30 uint8_t i ;

31

32 hardware_init () ;

33

34 // Changes the color of the led (red) to show the boot
35 set_color_i (4 , 0) ;

36

37 // Registers the reg i s t e r handler ca l l back function
38 radio_add_reg_callback (r eg i s t e r_hand l e r) ;

39

40 // I n i t i a l i s e s the body module with the spec i f i ed address (but do not s tar t the PD
contro l l e r)

41 init_body_module (MOTOR_ADDR[0]) ;

42 init_body_module (MOTOR_ADDR[1]) ;

43 init_body_module (MOTOR_ADDR[2]) ;

44 init_body_module (MOTOR_ADDR[3]) ;

45

46 // Keeps doing the fo l lowing
47 while (1) {

48 // Retrive motor posi t ions
49 for (i = 0 ; i < NUM_MOTORS ; i++) pos [i] = bus_get (MOTOR_ADDR[i] , MREG_POSITION) ;

50 }

51 return 0 ;

52 }

On the PC end, we simply request the motor positions and display them. In our case,
after initialization, we call the following function twice a second:

1 void r e ad_reg i s t e r s (CRemoteRegs& regs)

2 {

3 int8_t bu f f e r [4] ;

4 uint8_t length ;

6

5

6 // Get posi t ions from robot
7 reg s . get_reg_mb (0 , (uint8_t ∗) bu f f e r , l ength) ;

8

9 // Print the data
10 cout << "Motor�72��=�" << (int) bu f f e r [0] << endl ;

11 cout << "Motor�73��=�" << (int) bu f f e r [1] << endl ;

12 cout << "Motor�74��=�" << (int) bu f f e r [2] << endl ;

13 cout << "Motor�21��=�" << (int) bu f f e r [3] << endl ;

14 cout << " length ��=�" << (int) l ength << endl ;

15 }

5 Position control

Now that we are able to read out the position of each module in our robot, we want
to control them all. On the PC, we must tell the robot to enter a setpoints following
mode and then generate and send the desired motor positions. In this case, we have
the motor follow a sine wave trajectory (±40◦) for 5 seconds. Here is a code snippet
from the PC program:

1 // Change the mode from id l e to setpoint fo l lowing
2 reg s . set_reg_b (0 , 2) ;

3

4 // Generate a sine wave at 1 Hz for 5 sec
5 while (time <= 5∗1000)

6 {

7 int8_t angle = round (40 ∗ s i n (((double) time /1000) ∗2∗M_PI)) ;

8

9 // Send the value to the robot
10 reg s . set_reg_b (1 , (uint8_t) angle) ;

11

12 Sleep (10) ;

13 time += 10 ;

14 }

15

16 // Change the mode back to i d l e
17 reg s . set_reg_b (0 , 0) ;

Our updated register_handler function changes the mode (idle or setpoint following)
and updates the desired position based on signals from the PC:

1 stat ic int8_t r eg i s t e r_hand l e r (uint8_t operat ion , uint8_t address , RadioData∗ radio_data)

2 {

3 switch (operat ion)

4 {

5 case ROP_WRITE_8:

6 i f (address == 0) {

7 // Set the mode
8 reg8_table [REG8_MODE] = radio_data−>byte ;

9 return TRUE;

10 }

11 i f (address == 1) {

12 // Set the desired posi t ion
13 pos = (int8_t) radio_data−>byte ;

14 return TRUE;

15 }

16 break ;

17 default :

18 break ;

19 }

20 return FALSE;

21 }

Finally, the following function tells a body module to move to the desired position
and is called when the mode is changed to IMODE_MOTOR_SETPOINT (2 in our
implementation):

1 // Setpoint mode: The robot gets a angular value and moves the motor accordingly
2 void motor_setpoint_mode ()

7

3 {

4 // Starts the module
5 init_body_module (MOTOR_ADDR) ;

6 start_pid (MOTOR_ADDR) ;

7 se t_co lor (4) ;

8

9 // Sends the desired posi t ions to the module
10 while (reg8_table [REG8_MODE] == IMODE_MOTOR_SETPOINT) {

11 bus_set (MOTOR_ADDR, MREG_SETPOINT, DEG_TO_OUTPUT_BODY(pos)) ;

12 }

13

14 // Resets the posi t ion when the mode i s changed
15 bus_set (MOTOR_ADDR, MREG_SETPOINT, DEG_TO_OUTPUT_BODY(0 . 0)) ;

16 pause (ONE_SEC) ;

17 bus_set (MOTOR_ADDR, MREG_MODE, MODE_IDLE) ;

18 se t_co lor (2) ;

19 }

While it may not appear to do much in the while loop, the value of the global variable
pos is updated in an ISR, meaning that it will actually be sending the most recent
desired position. While this implementation is functional, there is still some lag and
the large amount of constant communication is far from ideal.

6 Onboard trajectory generation

In order to make the control more efficient and robust, we shifted the trajectory gen-
eration onto the modules. The user supplies the frequency, amplitude, and phase shift
of their desired sine wave trajectory, and the modules follow this pattern until they
are sent a new signal. In our case, we want a sine wave trajectory at 1 Hz with an
amplitude of ±40◦:

1 // Set frequency and amplitude
2 #define ENCODE_PARAM_8(p , pmin , pmax) ((uint8_t) ((p − pmin) / (f loat) (pmax−pmin) ∗ 255 .0))

3 r eg s . set_reg_b (1 , ENCODE_PARAM_8(1 , 0 , 1)) ; // frequency
4 reg s . set_reg_b (2 , ENCODE_PARAM_8(40 , 0 , 60)) ; // amplitude
5

6 // Start
7 reg s . set_reg_b (0 , 2) ;

8

9 Sleep (5000) ;

10

11 // Stop
12 reg s . set_reg_b (0 , 0) ;

On the robot side, we get the values from the robot through the register_handler
function (writing them to global variables):

1 stat ic int8_t r eg i s t e r_hand l e r (uint8_t operat ion , uint8_t address , RadioData∗ radio_data)

2 {

3 switch (operat ion)

4 {

5 case ROP_WRITE_8:

6 /∗ Mode reg i s t e r ∗/
7 i f (address == 0) {

8 reg8_table [REG8_MODE] = radio_data−>byte ;

9 return TRUE;

10 }

11 /∗ Frequency reg i s t e r ∗/
12 i f (address == 1) {

13 frequency = DECODE_PARAM_8((uint8_t) radio_data−>byte , 0 , 1) ;

14 return TRUE;

15 }

16 /∗ Amplitude reg i s t e r ∗/
17 i f (address == 2) {

18 amplitude = DECODE_PARAM_8((uint8_t) radio_data−>byte , 0 , 32) ;

19 return TRUE;

20 }

21 /∗ Phase lag reg i s t e r ∗/
22 i f (address == 3) {

8

23 phase_lag = DECODE_PARAM_8((uint8_t) radio_data−>byte , 0 , 2∗3 .14) ;

24 return TRUE;

25 }

26 /∗ Offset r eg i s t e r (for turning) ∗/
27 i f (address == 4) {

28 body_offset = DECODE_PARAM_8((uint8_t) radio_data−>byte , −32, 32) ;

29 return TRUE;

30 }

31 break ;

32 default :

33 break ;

34 }

35 return FALSE;

36 }

The robot then sets the motor position in the following function:
1 const uint8_t MOTOR_ADDR = 21;

2

3 void sine_demo_mode ()

4 {

5 init_body_module (MOTOR_ADDR) ;

6 start_pid (MOTOR_ADDR) ;

7

8 uint32_t dt , cyc l e t ime r ;

9 f loat my_time , delta_t , l ;

10 int8_t l_rounded ;

11

12 cyc l e t ime r = getSysTICs () ;

13 my_time = 0 ;

14 do {

15 // Calculates the delta_t in seconds and adds i t to the current time
16 dt = getElapsedSysTICs (cyc l e t ime r) ;

17 cyc l e t ime r = getSysTICs () ;

18 delta_t = (f loat) dt / sysTICSperSEC ;

19 my_time += delta_t ;

20

21 // Calculates the sine wave
22 l = amplitude ∗ s i n (M_TWOPI ∗ f requency ∗ my_time) ;

23 l_rounded = (int8_t) l ;

24

25 // Outputs to motor
26 bus_set (MOTOR_ADDR, MREG_SETPOINT, DEG_TO_OUTPUT_BODY(l_rounded)) ;

27

28 // Make sure there i s some delay , so that the timer output i s not zero
29 pause (ONE_MS) ;

30 } while (reg8_table [REG8_MODE] == IMODE_SINE_DEMO) ;

31

32 // Reset posi t ion when done
33 bus_set (MOTOR_ADDR, MREG_SETPOINT, DEG_TO_OUTPUT_BODY(0 . 0)) ;

34 pause (ONE_SEC) ;

35 bus_set (MOTOR_ADDR, MREG_MODE, MODE_IDLE) ;

36 }

The result is a higher quality, smoother sine wave than we observed before. This is due
to the fact that the setpoint can be updated at a higher frequency because the onboard
timer operations are extremely fast and do not have the inconsistent delays associated
with wirelessly passing the setpoint information. The system is also more robust to
losses in wireless connectivity. Overall, this solution is better and more efficient and is
therefore the method we use for our experiments.

7 Modulating trajectory parameters

Because of the way that we structured our code, it is relatively easy to control multiple
modules. Using the same register_handler as shown before, we can set the multi-
ple sine wave trajectories with the following function (called by setting the mode to
IMODE_SINE):

9

1 #define NUM_MOTORS 4

2 const uint8_t MOTOR_ADDR[NUM_MOTORS] = {72 , 73 , 74 , 21} ;

3

4 // Global sine wave parameters
5 f loat f requency ;

6 f loat amplitude ;

7 f loat phase_lag ;

8 f loat body_offset ;

9

10 void sine_mode ()

11 {

12 int i ;

13

14 // Enable motors
15 for (i=0 ; i<NUM_MOTORS ; i++)

16 {

17 init_body_module (MOTOR_ADDR[i]) ;

18 start_pid (MOTOR_ADDR[i]) ;

19 }

20

21 // For timer
22 uint32_t dt , cyc l e t ime r ;

23 f loat my_time , delta_t ;

24 int8_t l_rounded ;

25

26 // Desired angles
27 f loat theta [NUM_MOTORS]={0 ,0 ,0 ,0} ;

28

29 cyc l e t ime r = getSysTICs () ;

30 my_time = 0 ;

31 do {

32 // Calculates the delta_t in seconds and adds i t to the current time
33 dt = getElapsedSysTICs (cyc l e t ime r) ;

34 cyc l e t ime r = getSysTICs () ;

35 delta_t = (f loat) dt / sysTICSperSEC ;

36 my_time += delta_t ;

37

38 // Calculates the sine wave
39 theta [0] = amplitude ∗ s i n (M_TWOPI ∗ f requency ∗ my_time) + body_offset ;

40 theta [3] = amplitude ∗ s i n (M_TWOPI ∗ f requency ∗ my_time − phase_lag) + body_offset ;

41

42 // Outputs to motor
43 for (i=0 ; i<NUM_MOTORS ; i++)

44 {

45 bus_set (MOTOR_ADDR[i] , MREG_SETPOINT, DEG_TO_OUTPUT_BODY(theta [i])) ;

46 }

47

48 // Make sure there i s some delay , so that the timer output i s not zero
49 pause (ONE_MS) ;

50 } while (reg8_table [REG8_MODE] == IMODE_SINE) ;

51

52 // Reset posi t ion when done
53 for (i=0 ; i<NUM_MOTORS ; i++)

54 {

55 bus_set (MOTOR_ADDR[i] , MREG_SETPOINT, DEG_TO_OUTPUT_BODY(0 . 0)) ;

56 }

57 pause (ONE_SEC) ;

58 bus_set (MOTOR_ADDR, MREG_MODE, MODE_IDLE) ;

59 }

The computer simply updates the global parameter values (amplitude between 0◦ and
60◦ and frequency ≤ 1 Hz) Note that we also included a body_offset parameter to
allow for turning and a phase lag between the tail segments to see if we could increase
our swimming efficiency at a given frequency. The following PC code snippet allows
the user to easily update the parameter values in real time:

1 /∗ Set mode to sine mode ∗/
2 reg s . set_reg_b (0 , 2) ;

3

4 /∗ I n i t i a l i z e parameters ∗/
5 reg s . set_reg_b (1 , 0) ;

6 r eg s . set_reg_b (2 , 0) ;

7 r eg s . set_reg_b (3 , 0) ;

8

9 while (true)

10 {

11 /∗ Inter face ∗/
12 f loat param ;

13 char c ;

14 cout << ">�" ;

15 c in >> c ;

16 i f (c == ’ f ’) /∗ Frequency ∗/

10

17 {

18 c in >> param ;

19 uint8_t param8 = ENCODE_PARAM_8(param , 0 , 1) ;

20 r eg s . set_reg_b (1 , param8) ;

21 }

22 else i f (c == ’ a ’) /∗ Amplitude ∗/
23 {

24 c in >> param ;

25 uint8_t param8 = ENCODE_PARAM_8(param , 0 , 32) ;

26 r eg s . set_reg_b (2 , param8) ;

27 }

28 else i f (c == ’ l ’) /∗ Phase lag ∗/
29 {

30 c in >> param ;

31 uint8_t param8 = ENCODE_PARAM_8(param , 0 , 360) ;

32 r eg s . set_reg_b (3 , param8) ;

33 }

34 else i f (c == ’ 0 ’) /∗ Stop the robot ∗/
35 reg s . set_reg_b (0 , 0) ;

36 }

8 Using the tracking system

In order to test our robot, we use a specialized tracking system found in the Biorobotics
Laboratory. The system tracks LEDs in a 6× 1.5 m pool using two cameras. In order
to test the system with our robot, we implemented a simple program which changes
the color of the LED according to the position in the aquarium. The red component
of the LED depends on the x coordinate, while the blue component depends on the y
coordinate. The green component is kept at 128. We checked that the colors gradually
transitioned through the course and verified the colors at the corners of the aquarium:
green at (0, 0), yellow (red+green) at (6, 0), cyan (green+blue) at (0, 1.5), and white

(red+green+blue) at (6, 1.5).

9 Swimming trajectory generator

For simplicity, we decided to only focus on the body degrees of freedom and kept the
pectoral fins still. We also imposed the same amplitude and offset for the two body
elements.

Many vertebrates, such as the lamprey, swim in the water by propagating a sinusoidal
wave along their body. We chose to do the same with our two degrees of freedom: we
introduced a phase lag, φ, between the central DoF and the caudal fin DoF.

This gives us four parameters to control the motion of the robot:

• Amplitude R (common to the two DoFs)

• Frequency f

• Offset X (common to the two DoFs)

• Phase lag φ

11

The angular position of the central DoF and caudal fin DoF, represented by θ1 and θ2
respectively, are given by equation 1.

θ1 = R cos (2 ∗ π ∗ f ∗ t) +X

θ2 = R cos (2 ∗ π ∗ f ∗ t− φ) +X
(1)

Intuitively, the offset parameter X can be used to steer the robot (see [3]). We use it to
stabilize the trajectory of the robot in the aquarium using a proportional (P) controller.

10 Proportional controller

The aquarium has a size of approximately 6.0× 1.5 m. We therefore typically want the
robot to swim in the x direction. Unfortunately, due to open-loop control, the robot
often drifts and hits the side walls, making good velocity measurements difficult. In
order to alleviate this problem, we decided to implement a closed-loop control to keep
the robot along the middle of the pool (y0 = 0.75 m) using the tracking system. We do
this using a simple proportional controller that adjusts the offset (steers) based on the
position of the robot relative to the center:

X = K(y − y0) (2)

where K is the proportional gain. Figure 4 show how K influences the trajectory, for
K = 0◦, K = 30◦ and K = 60◦.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
0

0.25

0.5

0.75

1

1.25

1.5

x (m)

y
(m

)

K = 0
K = 30
K = 60

Figure 4: Influence of K on the trajectory.

12

For K = 0, the controller is deactivated, and the error increases over time. We see that
for K > 0, the absence of a derivative term induces overshooting which is why the robot
oscillations around the desired y-position. The oscillation is almost two times faster for
K = 60 than for K = 30, which is coherent. While P controller is far from perfect,
it at least allows the robot to do swim across the entire aquarium without hitting the
side walls.

11 Experiments

In order to better understand how our control parameters (in particular the frequency
and the phase lag φ) affect the swimming ability of the robot, we performed a few quick
experiments. First, we examined how the oscillation frequency influences the velocity of
our robot. We fixed an amplitude of R = 32◦ and a phase lag of φ = 90◦, and measure
the total displacement over a 5 second period1. For each frequency, we repeated the
experiments 5 times. The results are presented in Figure 5. As expected, the speed of
the robot increases, almost linearly, with the frequency. For f = 1 Hz, we obtain an
average speed of 9.3 cm/s.

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

frequency (Hz)

S
p
e
e
d
 (

cm
/s

)

Figure 5: Influence of f on the speed of the robot.

Then, we fixed the frequency to 1 Hz, and measured the velocity for different phase lags,
from 0◦ to 180◦. The results are reported in Figure 6. For phase lags lower than 90◦, the
wave is propagating from the body to the caudal fin, which is more biologically relevant.
We observe that the velocity is much higher in this range than for φ ∈ [90, 180], where

1We begin the measurement only when the speed and trajectory are stabilized.

13

the wave is propagating from the caudal fin to the body. The speed first increases, then
decreases dramatically with phase lag. The best result we saw was with φ = 60◦ (and
not 90◦, as we might expect). This is probably due to the shortness and limited DoF
of our robot.

0 30 60 90 120 150 180
0

2

4

6

8

10

12

φ (°)

S
p
e
e
d
 (

cm
/s

)

Figure 6: Influence of the phase lag φ on the speed of the robot.

12 Conclusion

The simple controller we wrote allows us to generate a good locomotion pattern. This
sine-based controller, which represents a propagating wave from the body to the caudal
fin, is also the locomotion used by a lot of vertebrates, like the lamprey [4] and the
salamander [5]. However, our controller is still very simple, and, in real applications,
may not be very robust against perturbations. A more robust and biologically relevant
implementation would use Central Pattern Generators (CPGs) [6], which are neural
circuits generating rythmic output patterns. This approach is very convenient to control
modular robots, even when they are not biologically inspired [7].

References

[1] Crespi, A., Karakasiliotis, K., Knuesel, J., & Ijspeert, A. J. (2011). Characteriza-

tion of a salamander-like robot (pp. 1-3). International Workshop on Bio-Inspired
Robots.

[2] Crespi, A. (2007). Design and Control of Amphibious Robots with Multiple Degrees

of Freedom. Thesis, École Polytechnique Fédérale de Lausanne.

14

[3] Lachat, D. (2005). BoxyBot, the fish robot: Design and realization. Semester project,
École Polytechnique Fédérale de Lausanne.

[4] A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. Swimming and Crawling

with an Amphibious Snake Robot. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), pages 3035–3039, 2005.

[5] Auke Jan Ijspeert, Alessandro Crespi, Dimitri Ryczko, and Jean-Marie Cabelguen.
From swimming to walking with a salamander robot driven by a spinal cord model.
Science, 315(5817):1416–1420, 2007.

[6] Auke Jan Ijspeert. Central pattern generators for locomotion control in animals and

robots: a review. Neural Networks, 21(4):642–653, 2008.

[7] Soha Pouya, Jesse van den Kieboom, Alexander Spröwitz, and Auke Ijspeert. Au-

tomatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the

question. In Proceedings of IEEE/RSJ IROS 2010, IEEE International Conference
on Intelligent Robots and Systems, pages 514–520. Ieee Service Center, 445 Hoes
Lane, Po Box 1331, Piscataway, Nj 08855- 1331 USA, 2010.

15

