
Autonomous Micro-Aerial Vehicle Navigation
Using a Custom Optic Flow Sensor Ring

Master Project: Final Presentation

Raphael Cherney

Swiss Federal Institute of Technology (EPFL)
Laboratory of Intelligent Systems (LIS)

Harvard University
Self-Organizing Systems Research Group (SSR)

ROBOBEES

2

!  Researchers at Harvard University are working to create a swarm of
robotic honey-bees

!  Such a distributed robotic system can be used for tasks such as:
!  Search and rescue
!  Hazardous environment exploration
!  Military surveillance
!  Weather and climate mapping
!  Crop pollination
!  Traffic monitoring

Image: Popular Science

ROBOBEES

3

!  Half-gram flapping-wing autonomous micro-aerial vehicle
!  The RoboBees are an extremely resource-scarce platform

!  Limited power
!  Limited computation
!  Limited sensing

ROBOBEES

4

!  The project is divided into three parts:

Body
!  Designing an insect-sized,

autonomous flapping-wing
micro-aerial vehicle (MAV)

Brain
!  Development of sensors,

control, and circuitry to
direct flight

Colony
!  Coordinate a hive of

miniature robots to
accomplish tasks

Image: Eliza Grinnel

Karpelson et al., 2010

(a) Virtual World (b) Helicopter Testbed

Figure 9: A HWIL deployment of a MAV swarm. Five testbed MAVs are deployed alongside 45 simulated MAVs to search a space for
flowers. The circle in the virtual world represents a flower patch (also visible in the testbed floor), and the box at the center denotes
the MAV hive.

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30

Y
 (

m
e
te

rs
)

X (meters)

 0

 1

 2

 3

 4

 5

 6

G
ra

d
ie

n
t
V

a
lu

e

Figure 10: An overhead trace of five simulated MAVs navigat-
ing through the environment with the assistance of a gradient
field provided by RF beacons (square dots). The gradient in
this case specifies two paths away from the center. The MAVs
use the value and the signal strength of beacon packets as input
to a biased random walk (chemotaxis) algorithm. The MAVs
are successful in traveling between the hive and the edge of the
gradient field along the two paths.

5.2 Example Scenarios
We describe two MAV swarm scenarios that we have simulated

using Simbeeotic. The main goal of the first scenario is coverage.
The MAV swarm is deployed to search a space for features of in-
terest (e.g. flowers) and manipulate the environment where the fea-
tures are located (e.g. chemical sampling, pollination). There are
many possible solutions to the swarm coordination problem, in-
cluding static task assignment, cooperative planning, and emergent
behavior. We employ a system that coordinates the actions of the
swarm from a centralized location called the hive [2]. We discretize
the world into cells and dispatch MAVs from the hive to perform a
specific task until they are low on energy, at which point they re-
turn to recharge. A planner at the hive analyzes the results of the
trip (the information collected) and determines which cells require
more attention. Figure 9 shows a snapshot of our swarm manage-
ment system executing a search and survey scenario using 45 vir-
tual MAVs and 5 testbed helicopters. The lefthand panel shows a

Simbeeotic visualization of the virtual world, while the righthand
panel shows the helicopters flying under PC control. This exam-
ple demonstrates that Simbeeotic has adequate modeling fidelity
in actuation and sensing to fly real hardware, and that the staged
deployment goals are satisfied.

The second scenario explores the possibility of using RF bea-
cons embedded in the environment as navigational aids for flying
MAVs. Figure 10 shows an overhead trace of MAVs using a biased
random walk algorithm in a gradient field [3] to navigate along two
preferred paths. The MAVs and beacons are equipped with virtual
CC2420 radios and isotropic antennas. The two-ray RF propaga-
tion model is used to calculate path loss. The MAVs use the value
and signal strength of beacon packets to determine the direction of
travel in the gradient. This example demonstrates one way that RF
communication can be used in a MAV swarm.

6. ONGOING WORK
There are three main directions for future work – scalability, fi-

delity, and autonomy. From the results in Section 5.1 it is clear that
the the physics engine is a bottleneck. We rely heavily on JBullet
for modeling actuation (dynamics, collision detection) and sensing
(ray tracing). Though it has satisfied our needs thus far, we may
consider replacing JBullet with Bullet [1] as we move toward mod-
eling swarms with tens of thousands of MAVs. JBullet is a pure
Java port of Bullet, which is written in C++. In addition to be-
ing written in a native language, newer versions of Bullet support
hardware acceleration on the GPU. The potential performance im-
provement may be worth the modest engineering effort to create
Java wrappers for the subset of the Bullet interfaces used by Sim-
beeotic.

Though we model the breadth of the MAV swarm domain, the fi-
delity of the networking models in Simbeeotic could be improved.
To date, our work on MAV swarms has not focused on communi-
cation. It is likely that the networking interfaces will need to evolve
beyond the simple physical layer implementation. We will look to
leverage community standard tools and models such as ns-3 as our
needs develop. In addition, we may expand our HWIL capabilities
to include real radios in a mote testbed, much link in EmStar. On
first inspection, it appears that the ghost model approach will work
well with a radio interface. Packets sent on a ghost interface would
be transmitted on the physical radio in addition to the virtual radio,
and packets received on the physical radio would be captured and

(a) Virtual World (b) Helicopter Testbed

Figure 9: A HWIL deployment of a MAV swarm. Five testbed MAVs are deployed alongside 45 simulated MAVs to search a space for
flowers. The circle in the virtual world represents a flower patch (also visible in the testbed floor), and the box at the center denotes
the MAV hive.

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30

Y
 (

m
e
te

rs
)

X (meters)

 0

 1

 2

 3

 4

 5

 6

G
ra

d
ie

n
t
V

a
lu

e

Figure 10: An overhead trace of five simulated MAVs navigat-
ing through the environment with the assistance of a gradient
field provided by RF beacons (square dots). The gradient in
this case specifies two paths away from the center. The MAVs
use the value and the signal strength of beacon packets as input
to a biased random walk (chemotaxis) algorithm. The MAVs
are successful in traveling between the hive and the edge of the
gradient field along the two paths.

5.2 Example Scenarios
We describe two MAV swarm scenarios that we have simulated

using Simbeeotic. The main goal of the first scenario is coverage.
The MAV swarm is deployed to search a space for features of in-
terest (e.g. flowers) and manipulate the environment where the fea-
tures are located (e.g. chemical sampling, pollination). There are
many possible solutions to the swarm coordination problem, in-
cluding static task assignment, cooperative planning, and emergent
behavior. We employ a system that coordinates the actions of the
swarm from a centralized location called the hive [2]. We discretize
the world into cells and dispatch MAVs from the hive to perform a
specific task until they are low on energy, at which point they re-
turn to recharge. A planner at the hive analyzes the results of the
trip (the information collected) and determines which cells require
more attention. Figure 9 shows a snapshot of our swarm manage-
ment system executing a search and survey scenario using 45 vir-
tual MAVs and 5 testbed helicopters. The lefthand panel shows a

Simbeeotic visualization of the virtual world, while the righthand
panel shows the helicopters flying under PC control. This exam-
ple demonstrates that Simbeeotic has adequate modeling fidelity
in actuation and sensing to fly real hardware, and that the staged
deployment goals are satisfied.

The second scenario explores the possibility of using RF bea-
cons embedded in the environment as navigational aids for flying
MAVs. Figure 10 shows an overhead trace of MAVs using a biased
random walk algorithm in a gradient field [3] to navigate along two
preferred paths. The MAVs and beacons are equipped with virtual
CC2420 radios and isotropic antennas. The two-ray RF propaga-
tion model is used to calculate path loss. The MAVs use the value
and signal strength of beacon packets to determine the direction of
travel in the gradient. This example demonstrates one way that RF
communication can be used in a MAV swarm.

6. ONGOING WORK
There are three main directions for future work – scalability, fi-

delity, and autonomy. From the results in Section 5.1 it is clear that
the the physics engine is a bottleneck. We rely heavily on JBullet
for modeling actuation (dynamics, collision detection) and sensing
(ray tracing). Though it has satisfied our needs thus far, we may
consider replacing JBullet with Bullet [1] as we move toward mod-
eling swarms with tens of thousands of MAVs. JBullet is a pure
Java port of Bullet, which is written in C++. In addition to be-
ing written in a native language, newer versions of Bullet support
hardware acceleration on the GPU. The potential performance im-
provement may be worth the modest engineering effort to create
Java wrappers for the subset of the Bullet interfaces used by Sim-
beeotic.

Though we model the breadth of the MAV swarm domain, the fi-
delity of the networking models in Simbeeotic could be improved.
To date, our work on MAV swarms has not focused on communi-
cation. It is likely that the networking interfaces will need to evolve
beyond the simple physical layer implementation. We will look to
leverage community standard tools and models such as ns-3 as our
needs develop. In addition, we may expand our HWIL capabilities
to include real radios in a mote testbed, much link in EmStar. On
first inspection, it appears that the ghost model approach will work
well with a radio interface. Packets sent on a ghost interface would
be transmitted on the physical radio in addition to the virtual radio,
and packets received on the physical radio would be captured and

Kate et al., 2012

ROBOBEES

5 Progress…but not there yet.

ROBOBEES

6

!  We use a micro-helicopter platform as a stand-in for the
RoboBees while under development

!  Similar limitations on
!  Weight
!  Power
!  Computation
!  Sensing

≈

1

Vision-based sensing

VISION
!  The RoboBees will use omnidirectional vision sensors for

navigation and control
!  Low power
!  Lightweight
!  High information density
!  Existing sensor technology

Source: Czech Technical University

!  We have developed an
specialized vision-based sensor
ring for use with our helicopter
platform

GOALS

8

?

!  Get the RoboBee-inspired hardware ready for testing
!  Vision-based sensing
!  Fully on-board computation

!  Build a simulation for testing behaviors

STATE OF THE ART

9

Autonomous Multi-Floor Indoor Navigation with a
Computationally Constrained MAV

Shaojie Shen, Nathan Michael, and Vijay Kumar

Abstract— In this paper, we consider the problem of au-
tonomous navigation with a micro aerial vehicle (MAV) in
indoor environments. In particular, we are interested in au-
tonomous navigation in buildings with multiple floors. To
ensure that the robot is fully autonomous, we require all
computation to occur on the robot without need for external
infrastructure, communication, or human interaction beyond
high-level commands. Therefore, we pursue a system design
and methodology that enables autonomous navigation with real-
time performance on a mobile processor using only onboard
sensors. Specifically, we address multi-floor mapping with
loop closure, localization, planning, and autonomous control,
including adaptation to aerodynamic effects during traversal
through spaces with low vertical clearance or strong external
disturbances. We present experimental results with ground
truth comparisons and performance analysis.

I. INTRODUCTION

We are interested in the problem of surveilling and ex-
ploring environments that include both indoor and outdoor
settings. Aerial vehicles offer mobility and perspective ad-
vantages over ground platforms and micro aerial vehicles
(MAVs) are particularly applicable to buildings with multiple
floors where stairwells can be an obstacle to ground vehicles.
A challenge when operating in indoor environments is the
lack of an external source of localization such as GPS.
For these reasons, in this work we focus on autonomous
navigation in buildings with multiple floors without requiring
an external source of localization or prior knowledge of the
environment. To ensure that the robot is fully autonomous,
we require all computation to occur on the robot without
need for external infrastructure, communication, or human
interaction beyond high-level commands. Therefore, we pur-
sue a system design and methodology capable of autonomous
navigation with real-time performance on a mobile processor
using only onboard sensors (Fig. 1); where in this work
autonomous navigation considers multi-floor mapping with
loop closure, localization, planning, and control.

The paper consists of three parts: (1) a system overview
that details our approach and places it into context with
existing methodologies (Sect. II); (2) extensions necessary
to permit operation onboard the robot in multi-floor environ-
ments and to compensate for external aerodynamic effects
(Sect. III); and (3) experiment results that characterize system

S. Shen, N. Michael, and V. Kumar are with the GRASP Laboratory,
University of Pennsylvania, Philadelphia, PA 19104, USA. {shaojie,
nmichael, kumar}@grasp.upenn.edu

We gratefully acknowledge the support of NSF grants IIS-0427313
and IIP-0742304, ARO Grant W911NF-05-1-0219, ONR Grants N00014-
07-1-0829 and N00014-08-1-0696, ARL Grant W911NF-08-2-0004, and
Lockheed Martin.

Fig. 1. The experimental platform with onboard computation (1.6 GHz
Atom processor) and sensing (laser, camera, and IMU).

performance and accuracy and demonstrate application in
multi-floor environments (Sect. IV).

We note that the topic of autonomous navigation with a
MAV is addressed by others in the community with some
similarities in approach and methodology. Relevant to this
paper is the work of Bachrach et al. [1, 2], Grzonka et al. [3],
and Blösch et al. [4] with results toward online autonomous
navigation and exploration with an aerial vehicle. The major
points of differentiation between existing results and our
work are threefold. First, all the processing is done onboard
requiring algorithms that lend themselves to real-time com-
putation on a small processor. Second, we consider multi-
floor operation with loop closure. Third, we design adaptive
controllers to compensate for external aerodynamic effects
which would otherwise prohibit operation in constrained
environments.

II. METHODOLOGY AND RELATED LITERATURE

We are interested in real-time autonomous navigation in
multi-floor indoor environments using an aerial vehicle with
pragmatic constraints on available computational resources
(speed and memory). Therefore, we must address the prob-
lems of mapping, localization, planning, and control given
these system requirements. Each of these topics covers a
breadth of literature and as such we focus here only on
research that directly impacts our system design and method-
ology. We evaluated many strategies in the development of
the system and will motivate algorithm selection based on
this evaluation but will restrict any quantitative analysis to
only those methods used in the experiments (Sect. IV). The
discussion follows the logical flow of the system design
(Fig. 2), but first we provide relevant notation.

Shen et et al., 2011

26 2. CAMERA AS A MOTION SENSOR

Figure 2.1: The top-left picture depicts our vehicle (the Pelican) from Ascending
Technologies. Beneath it, the on-board-mounted camera. The top-right picture is
a screen-shot of Klein and Murray’s visual SLAM algorithm. The tracking of the
FAST corners can be observed. This is used for the localization of the camera. In
the bottom picture, the 3D map built by the mapping thread is shown. The 3-axis
coordinate frames represent the location where new key-frames were added. Each
key-frame consists of a 6DoF camera pose, the camera image and its down-sampled
pyramidal levels schematically depicted on the bottom right. (Weiss et al. (2011b))

estimation and does not consider any uncertainties, neither for the pose of
the camera nor for the location of the features. This considerably reduces
computational complexity. Considering the uncertainty of the state could
ease the data association process. The lack of modeling uncertainties, how-
ever, is compensated by the use of a large amount of features and the global
and local batch optimization. Therefor, despite using a fixed area for feature
matches, the algorithm is still able to track efficiently the point features and
to close loops up to a certain extent. This makes the algorithm extremely fast
and reliable, and the map very accurate. As demonstrated in a recent paper
by Strasdat et al. (Strasdat et al. (2010)), key-frame SLAM outperforms

Zingg et al., 2012

116 TEST PLATFORMS

Figure A.1: Photograph of the MC2 microflyer prototype (Zufferey et al., 2006b,

2007).

(d)

(b)

(c) (e)
(b)

(c) (e)
(a)

(a)

horizontal
FOV

vertical FOV
(configuration 1)

vertical FOV
(configuration 2)

Figure A.2: Components and camera field of view (FOV) layout of the MC2. See

main text for details.

Zufferey et al., 2006

Small size
Little computational power
Limited sensing

Larger payload
Greater computational power
Extended sensing

Bermes et al., 2010

Calafell et al., 2011

Wood et al., 2012

Bitcraze, 2013

PLATFORM

10

!  Coaxial helicopter
!  based on Blade mCX2
!  19 cm rotor diameter
!  2 DC motors for rotors
!  2 linear servos adjust swashplate

!  Completely autonomous
!  custom control board designed by

Centeye Ltd.
!  lithium-polymer battery
!  gyroscope
!  wireless radio

!  Custom optic flow sensor ring
!  30 g total weight

SENSOR RING

11

Sensor control board
!  48 MHz 32-bit AVR microcontroller
!  Readout images from vision chips
!  Perform optic flow estimation and send to helicopter control board
Sensor strip
!  Flexible printed circuit board (PCB)
!  10 cm diameter ring
Vision chips
!  8 specialized vision chips from Centeye Ltd.
!  64 x 64 array of logarithmic pixels
!  10-bit ADC readout
!  Integrated optics with ~75° field-of-view

SENSOR RING

12

!  360° view
!  Memory and bandwidth

constraints

OPTIC FLOW

13

!  We use the sensor ring to measure optic flow around the MAV
!  Optic flow is the apparent visual motion of objects, surfaces, and edges in

a scene caused by the relative motion between an observer and a scene

OPTIC FLOW

14

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

!  We want to extract information from the
environment by estimating the optic flow
around the vehicle

OPTIC FLOW

15

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

Image at

Image at

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

OPTIC FLOW

16

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

Image interpolation algorithm (I2A)
!  Simple, fast, and lightweight algorithm
!  Assumes the current image can be linearly interpolated from

previous image and space shifted reference images

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

estimate this motion using series of images taken in close spacial and temporal proximity and

extracting information from the changes between them. This information can then be used

to gather information about the environment and ultimately incorporated into our control

and navigation.

5.1. Algorithm
There are several algorithms for calculating the optic flow based on a series of images. Some

of the most common methods include block matching, the Lucas-Kanade method, or other

gradient techniques. In our implementation, we use a variant of the image interpolation

algorithm (I2A). The algorithm is detailed in [127], with our particular implementation

described in [54]. We chose the algorithm because it is simple, fast, and lightweight.

The algorithm calculates the horizontal and vertical flow by comparing the current image

with a set of four reference images which are translated from a previous frame. The pixel

intensity function at time t0 and t is f0(x, y) and f(x, y), respectively where x and y are

the image coordinates measured in pixels. The four reference images f1, f2, f3, and f4 are

formed by shifting the image f0 by reference shifts ∆xref and ∆yref along the horizontal

and vertical directions as described in equation 23. These shifts determine the maximum

displacement we account for (and therefore sensitivity, as well).

f1(x, y) = f0(x+∆xref , y)

f2(x, y) = f0(x−∆xref , y)

f3(x, y) = f0(x, y +∆yref)

f4(x, y) = f0(x, y −∆yref) (23)

The algorithm assumes that the image at time t can be linearly interpolated from f0 and

the four reference images. With this assumption, the pixel coordinate translation ∆x and

∆y can be expressed as in

f̂ = f0 + 0.5

�
∆x

∆xref

�
(f2 − f1) + 0.5

�
∆y

∆yref

�
(f4 − f3) (24)

We then just need to solve for the translations ∆x and ∆y that give us the interpolated

image f̂ which is closest to the actual image f . We do this by solving the least squares

problem in our region of interest which is defined by the window function Ψ (we use a

boxcar kernel). The error function which we need to minimize then becomes

E =

ˆ ˆ
Ψ ·

�
f − f̂

�2
dx dy (25)

We minimize the error by taking the partial derivatives of E with respect to ∆x and ∆y
and setting them equal to zero. This allows us to form the following set of equations:

36

OPTIC FLOW

17

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

Image interpolation algorithm (I2A)
!  By minimizing the error between the interpolated image and

actual image, we can estimate the flow

OPTIC FLOW

18

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

What causes this optic flow?

x
y

z

x
y

z

x
y

z

OPTIC FLOW

19

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

!  There are two, additive components to optic flow:

x
y

z

x
y

z

x
y

z

Translation

Rotation

OPTIC FLOW

20

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

obstacle

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation OF

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

Figure 25: Optic flow during translational flight

OF =
v

D
· sinα (31)

where OF is the measured optic flow, v is the velocity of the object, and α is the angle

between the object and direction of travel (Figure 25). We can use this to estimate the

distance to a particular object based on the flow

D =
v

OF
· sinα (32)

For our MAV and sensor configuration, we know the expected optical flow vectors for

each camera given translation along the different body axes (assuming constant distance

objects). This is shown in Figure 26. Note that the flow vectors are maximized when the

camera direction is perpendicular to the direction of travel. Also note that vectors can be

superimposed for motion along more than one axis.

38

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

obstacle

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation OF

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

obstacle

5. Optic Flow

Optic flow, also known as optical flow, is the apparent visual motion of objects, surfaces,

and edges in a scene caused by the relative motion between an observer and a scene. We can

calculate this motion field using series of images taken in close spacial and temporal proximity

and extracting information from the changes between them. There are clear mathematical

relationships between the magnitude and direction of the optic flow and the relative motion

between the bodies. As we intuitively know, when traveling at a constant velocity, objects

which are closer appear to move more quickly in our visual field. Similarly, optic flow is also

maximized when the motion is perpendicular to the observer. We can use this knowledge to

control our motion and extract information from the environment. Figure shows an example

of a plane landing. The vectors represent the measured optic flow around the image.

Figure 25: Optic flow experienced by rotating observer (adapted from [7])

Optic flow is often used in computer vision and robotics to aid tasks such as target tracking,

obstacle avoidance, and distance regulation OF

OFi =
v

Di
· sinα (23)

Di =
v

OFi
· sinα (24)

This visual information can be used to

There are clear mathematical relationships between the magnitude of the optic flow and

where the object is in relation to you. If you double the speed which you travel, the optic

flow you see will also double. If an object is brought twice as close to you, the optic flow will

again double. Also the optic flow will vary depending on the angle between your direction of

travel and the direction of the object you are looking at. Suppose you are travelling forward.

The optic flow is the fastest when the object is to your side by 90 degrees, or directly above

or below you. If the object is brought closer to the forward or backward direction, the optic

flow will be less. An object directly in front of you will have no optic flow, and appear to

stand still.

visual odometry

the optic flow measurement is noisier than what we see on the helicopter.

36

Figure 25: Optic flow during translational flight

OF =
v

D
· sinα (31)

where OF is the measured optic flow, v is the velocity of the object, and α is the angle

between the object and direction of travel (Figure 25). We can use this to estimate the

distance to a particular object based on the flow

D =
v

OF
· sinα (32)

For our MAV and sensor configuration, we know the expected optical flow vectors for

each camera given translation along the different body axes (assuming constant distance

objects). This is shown in Figure 26. Note that the flow vectors are maximized when the

camera direction is perpendicular to the direction of travel. Also note that vectors can be

superimposed for motion along more than one axis.

38

!  Translational optic flow gives us information about the environment
!  Rotational optic flow does not

0 20000 40000 60000 80000 100000
Frame Count

−1.0

−0.5

0.0

0.5

1.0

Y
aw

 A
ng

ul
ar

 R
at

e

Gyro
Optic Flow

OPTIC FLOW

21

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

!  Subtract rotational optic flow component based on inertial sensors

0 100 200 300 400 500
Sample Number

0

20

40

60

80

H
or

izo
nt

al
 O

pt
ic

Fl
ow

Raw

OPTIC FLOW

22

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller 0 100 200 300 400 500
Sample Number

0

20

40

60

80

H
or

izo
nt

al
 O

pt
ic

Fl
ow

Raw
Filtered

OPTIC FLOW

23

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

!  The optic flow data give information about the
environment that can be used for control

!  Use a set of base autonomous behaviors
!  Corridor following
!  Wall following
!  Obstacle avoidance
!  Hover in place

OPTIC FLOW

24

Capture images

Estimate optic flow

Rotation compensation

Low-pass filter

Controller

x

y

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

!  Simple, reactive controller:

We have begun by testing a very simple, reactive controller that simply takes the optic
flow readings from around the ring (OFi) and combines them through a simple weighted sum
(as proposed in [21]). These weights can optionally be adjusted during flight to change the
behavior. The basic structure is shown in Figure 41. This same structure, but with different
weights can be used to control the various commands. This is expressed in the following
equation:

δj =
7�

i=0

wi,j ·OFi (35)

where j identifies the particular command, wi,j are the weights for the command, and OFi

is the optic flow measurement.

x

y

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
w0 w1 w2 w3 w4 w5 w6 w7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

7. Autonomous Tasks
We are interested in autonomous indoor flight using our MAV. For our initial testing, we
have chosen to separate the control from the more-advanced navigation and mapping tasks.
In this way, we can develop and maintain reliable flight, adding advanced capabilities on top
of this. To begin, we have identified a set of simple autonomous behaviors to be used as
elements of a more advanced, indoor navigational strategy. These behaviors include:

• Corridor following

• Wall following

• Obstacle avoidance

• Hover in place

Ultimately, we hope to use the visual sensing information to guide the controller to areas of
interest or specific goals. In fact, these tasks can relatively easily be incorporated into an
autonomous exploration or mapping algorithm (when combined with egomotion estimation).
For our initial testing, we have focused on the task of corridor following.

7.1. Corridor Following
OF0 OF1 OF2 OF3 OF4 OF5 OF6 OF7

Σ

7.1.1. Introduction

Corridor following is not new to the realm of robotics. Most control strategies use an ap-
proach inspired from biology.

We hope that with the redundancy in the information provided by the ring, we may be
able to overcome some of the problems of testing in real-world connotations (areas of low
texture, inconsistent brightness, etc.)

see [10]
(Centering?)
try to have same flow on both sides
Balance the optic flow on both sides of the robot.
A robot finds the midline between obstacles by balancing the optic flow on both sides.

Since the optic flow during translation is inversely proportional to the distance of the passed
objects, balancing the image flow results in balancing the distances. see [11]

[12] proposes a MAV autopilot based on optic flow for corridor following. The velocity is
commanded in open-loop, and the yaw is adjusted based on the following error function

� = sign (OFleft −OFright) · (OFset −max (OFleft, OFright))

where OFset is a desired flow rate.
In order to smooth the optic flow readings, we implement a simple low-pass filter (LPF).where

∆t is the sampling period (16 ms in our case).

52

Figure 41: Reactive controller structure

7.3. Corridor Following
As an example behavior, we have started work toward creating a controller for flying through
indoor corridors. Much of this work is still in progress (with a large portion of the work going
toward the hardware itself). In simulation, we have used the control structure described
above to control the roll of the MAV in the simulated environment from Figure 20. We use
the idea of optic flow balance when choosing our weights so that the robot will naturally
tend to find the center of the corridor. In our tests, the robot begins near a wall with a

55

HARDWARE

25

HARDWARE

26

!  We worked to get the platform ready for testing
!  Communication with sensor ring
!  Image acquisition
!  Optic flow calculation
!  Collection of sample datasets
!  Reading from gyroscope
!  De-rotating flow
!  Wireless communication
!  Vicon motion tracking

HARDWARE

27

!  When working with MAVs, there are a variety of difficulties associated
with using actual hardware
!  Limited testing environments
!  Limited flight time
!  Harder to program devices (longer iteration time)
!  Difficulty tracking motion
!  Difficulty logging data
!  Hardware malfunctions

SIMULATION

SIMULATION

28

!  Developed a model of the MAV and indoor environment for testing

MODEL

29

PHYSICS

30

Rotor drag

Rotor thrust

Gravity

Fuselage drag

Restoring force (optional)

ENVIRONMENT

31

!  Realistic, indoor simulation
environment for testing

!  Textures from actual test
environment

−5 0 5 10 15 20 250

5

10

15

20

25 Poster

Door

SIMULATION

32

!  We can test behaviors in
simulation and then port
controllers to our hardware

!  As an example, we implemented
a simple corridor centering
algorithm
!  Balance optic flow

SIMULATION

33

SENSOR CONFIGURATIONS

34

!  The optic flow sensor ring has a memory and bandwidth
limitations

!  What is the best configuration for reading out sensor data?

SENSOR CONFIGURATIONS

35

16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Configuration A:

Camera Angle:
!7!
8

!5!
8

!3!
8

!!
8

!
8

3!
8

5!
8

7!
8

32×32 32×32 32×32 32×32

Configuration B:

64×8 64×8 64×8 64×8 64×8 64×8 64×8 64×8

Configuration C:

(Constant pixel size)

SENSOR CONFIGURATIONS

36

Advantages
!  Evenly distributes images around MAV
!  Efficient binning of pixels for improved signal
!  Can easily condense data into logical vectors
!  Easy to implement
Disadvantages
!  Low pixel count limits number of flow vectors that can be found

with a given camera

Configuration A 16!16 (!8)

SENSOR CONFIGURATIONS

37

Advantages
!  Better resolution when traveling “forward”
!  Increased sensitivity in the optic flow estimate (due to higher resolution)
!  Can support larger number of optic flow vectors per image
!  Image overlap provides redundancy
Disadvantages
!  No data from behind (cannot track obstacles you have passed)
!  Overlapping images means we are not maximizing our total field of view

(redundancy may be unnecessary)

Configuration B 32!32 (!4)

SENSOR CONFIGURATIONS

38

Advantages
!  Maximizes sensitivity for horizontal flow
!  Evenly distributes sensing around MAV (bilaterally symmetric)
!  Uses full sensor area
Disadvantages
!  Reduced vertical flow data
!  More difficult to implement in hardware

Configuration C 64!8 (!8)

SENSOR CONFIGURATIONS

39

Low texture

FUTURE WORK

40

!  Test with hardware (in progress)
!  Implement additional base behaviors (in progress)
!  Egomotion estimation
!  Combine base behaviors into advanced control and planning algorithms
!  Coordinate action with multiple agents

!  Radhika Nagpal
!  Karthik Dantu
!  Richard Moore
!  Harvard University
!  Self-Organizing Systems Research Group (SSR)

!  Dario Floreano
!  Maja Varga
!  Swiss Federal Institute of Technology (EPFL)
!  Laboratory of Intelligent Systems (LIS)

ACKNOWLEDGEMENTS

41

QUESTIONS

42

