Autonomous Micro-Aerial Vehicle Navigation Using a Custom Optic Flow Sensor Ring

Master Project: Final Presentation Raphael Cherney

Harvard University Self-Organizing Systems Research Group (SSR)

BLADE®

Swiss Federal Institute of Technology (EPFL) Laboratory of Intelligent Systems (LIS)

- Researchers at Harvard University are working to create a swarm of robotic honey-bees
- Such a distributed robotic system can be used for tasks such as:
 - Search and rescue
 - Hazardous environment exploration
 - Military surveillance
 - Weather and climate mapping
 - Crop pollination
 - Traffic monitoring

Image: Popular Science

- Half-gram flapping-wing autonomous micro-aerial vehicle
- The RoboBees are an extremely resource-scarce platform
 - Limited power
 - Limited computation
 - Limited sensing

The project is divided into three parts:

Body

 Designing an insect-sized, autonomous flapping-wing micro-aerial vehicle (MAV)

Brain

Control IC

 Development of sensors, control, and circuitry to direct flight

> Custom magnetics

> > Discrete components

Kapton substrate

Bare-die HV semiconductors

Karpelson et al., 2010

Colony

 Coordinate a hive of miniature robots to accomplish tasks

Progress...but not there yet.

BLADE°

 We use a micro-helicopter platform as a stand-in for the RoboBees while under development

Vision-based sensing

- Similar limitations on
 - Weight
 - Power
 - Computation
 - Sensing

The RoboBees will use omnidirectional vision sensors for navigation and control

Low power

VISION

- Lightweight
- High information density
- Existing sensor technology
- We have developed an specialized vision-based sensor ring for use with our helicopter platform

Source: Czech Technical University

GOALS

- Get the RoboBee-inspired hardware ready for testing
 - Vision-based sensing
 - Fully on-board computation
- Build a simulation for testing behaviors

STATE OF THE ART

PLATFORM

- Coaxial helicopter
 - based on Blade mCX2
 - 19 cm rotor diameter
 - 2 DC motors for rotors
 - 2 linear servos adjust swashplate
- Completely autonomous
 - custom control board designed by Centeye Ltd.
 - lithium-polymer battery
 - gyroscope
 - wireless radio
- Custom optic flow sensor ring
- 30 g total weight

SENSOR RING

Sensor control board

- 48 MHz 32-bit AVR microcontroller
- Readout images from vision chips
- Perform optic flow estimation and send to helicopter control board

Sensor strip

- Flexible printed circuit board (PCB)
- 10 cm diameter ring

Vision chips

- 8 specialized vision chips from Centeye Ltd.
- 64 x 64 array of logarithmic pixels
- 10-bit ADC readout
- Integrated optics with ~75° field-of-view

SENSOR RING

- We use the sensor ring to measure optic flow around the MAV
- Optic flow is the apparent visual motion of objects, surfaces, and edges in a scene caused by the relative motion between an observer and a scene

 We want to extract information from the environment by estimating the optic flow around the vehicle

Image at t_0

Image at t

Image interpolation algorithm (I2A)

- Simple, fast, and lightweight algorithm
- Assumes the current image can be linearly interpolated from previous image and space shifted reference images

$$f_1(x,y) = f_0(x + \Delta x_{ref}, y)$$

$$f_2(x,y) = f_0(x - \Delta x_{ref}, y)$$

$$f_3(x,y) = f_0(x, y + \Delta y_{ref})$$

$$f_4(x,y) = f_0(x, y - \Delta y_{ref})$$

$$\hat{f} = f_0 + 0.5 \left(\frac{\Delta x}{\Delta x_{ref}}\right) (f_2 - f_1) + 0.5 \left(\frac{\Delta y}{\Delta y_{ref}}\right) (f_4 - f_3)$$

Image interpolation algorithm (I2A)

 By minimizing the error between the interpolated image and actual image, we can estimate the flow

What causes this optic flow?

• Subtract rotational optic flow component based on inertial sensors

- The optic flow data give information about the environment that can be used for control
- Use a set of base autonomous behaviors
 - Corridor following
 - Wall following
 - Obstacle avoidance
 - Hover in place

HARDWARE

26

HARDWARE

- We worked to get the platform ready for testing
 - Communication with sensor ring
 - Image acquisition
 - Optic flow calculation
 - Collection of sample datasets
 - Reading from gyroscope
 - De-rotating flow
 - Wireless communication
 - Vicon motion tracking

HARDWARE

- When working with MAVs, there are a variety of difficulties associated with using actual hardware
 - Limited testing environments
 - Limited flight time
 - Harder to program devices (longer iteration time)
 - Difficulty tracking motion
 - Difficulty logging data
 - Hardware malfunctions

SIMULATION

BLADE*

SIMULATION

Developed a model of the MAV and indoor environment for testing

MODEL

ENVIRONMENT

- Realistic, indoor simulation environment for testing
- Textures from actual test environment

SIMULATION

- We can test behaviors in simulation and then port controllers to our hardware
- As an example, we implemented a simple corridor centering algorithm
 - Balance optic flow

SIMULATION

- The optic flow sensor ring has a memory and bandwidth limitations
- What is the best configuration for reading out sensor data?

(Constant pixel size)

Configuration A 16×16 (×8)

Advantages

- Evenly distributes images around MAV
- Efficient binning of pixels for improved signal
- Can easily condense data into logical vectors
- Easy to implement
- Disadvantages
- Low pixel count limits number of flow vectors that can be found with a given camera

Configuration B

Advantages

- Better resolution when traveling "forward"
- Increased sensitivity in the optic flow estimate (due to higher resolution)
- Can support larger number of optic flow vectors per image
- Image overlap provides redundancy

Disadvantages

- No data from behind (cannot track obstacles you have passed)
- Overlapping images means we are not maximizing our total field of view (redundancy may be unnecessary)

Configuration C 64×8 (×8)

Advantages

- Maximizes sensitivity for horizontal flow
- Evenly distributes sensing around MAV (bilaterally symmetric)
- Uses full sensor area

Disadvantages

- Reduced vertical flow data
- More difficult to implement in hardware

FUTURE WORK

- Test with hardware (in progress)
- Implement additional base behaviors (in progress)
- Egomotion estimation
- Combine base behaviors into advanced control and planning algorithms
- Coordinate action with multiple agents

ACKNOWLEDGEMENTS

- Radhika Nagpal
- Karthik Dantu
- Richard Moore
- Harvard University
- Self-Organizing Systems Research Group (SSR)

VEI RI ITASI

- Dario Floreano
- Maja Varga
- Swiss Federal Institute of Technology (EPFL)
- Laboratory of Intelligent Systems (LIS)

QUESTIONS

