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Summary

This semester project, undertaken during the spring 2012 term at the Laboratory of
Intelligent Systems (LIS) of the Swiss Federal Institute of Technology (EPFL), is about
the development of a biologically-accurate 3D simulated Drosophila melanogaster model.
We collected data on Drosophila morphology using image analysis and high-speed video.
We then used this information to create a biologically-plausible fly model in Webots
(Figure 1) and developed controllers to coordinate the 36 degrees of freedom. The control
structure and model itself can be easily adapted to answer a variety of control-related
questions related to biology and robotics.

(a) High-speed video of live Drosophila (b) Webots model with hand-tuned controller

Figure 1: Comparison between biology and model

Using particle swarm optimization (PSO), we optimized the phase difference between
independent, hand-tuned leg oscillators to maximize the speed of locomotion. Through
this we found four emergent gaits, the fastest being a variant of a ripple gait (Figure 2).

(a) Hand-tuned alternating tripod gait (b) Speed-optimized ripple-like gait

(c) Emergent trot-like gait (d) Evlolved alternating tripod gait

Figure 2: Emergent gaits from particle swarm optimization (swing phase in black)
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1 Introduction

1.1 Background

Locomotion is one of the most impressive and important skills that organisms have ever
developed. It allows living things to experience different aspects of our world and exploit
our environment in new and better ways. Insects (class Insecta) have a particularly well-
developed and robust ability to move. Through millions of years of evolution, insects have
gained the ability to fly and/or climb over obstacles. Using a collection of specialized
sensory organs, insects are able to perceive and traverse very complex environments.
They can coordinate many degrees of freedom in sophisticated and elegant ways. Despite
this fact, insect nervous systems are relatively simple. This combination of robust, stable
locomotion and simple control have made hexapod insects an interesting model in other
fields such as robotics.

Drosophila melanogaster (Figure 3), more commonly known as the fruit fly, is a model
organism in biology. Due to its small size, short generation time, ease of care, and large
brood numbers, it has become one of the most intensely studied organisms in biology.
In particular, we understand the Drosophila genome better than almost any other. This
allows us to create and test a variety of genetic experiments that could not be done
practically with any other organism. Through biological research and specialized experi-
ments, we can better understand the mechanisms of insect locomotion. We often assume
that because flies can fly, their walking behavior is somehow less interesting. However,
flying insects spend a majority of the time attached to and traversing complex surfaces,
and they have evolved a remarkable ability to traverse cluttered environments. By uti-
lizing concepts from fly locomotion, we may be able to answer questions about advanced
walking creatures and even use the ideas to create more robust walking machines.
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(a) Side view

(b) Bottom view

Figure 3: Female Drospophila melanogaster

1.2 Project goals

The goal of this semester project was to develop a biologically-accurate, 3D model of
Drosophila melanogaster. Using anatomical and behavioral data from live Drosophila,
the model should be able to emulate the walking motion of flies. In particular, the model
should have the following characteristics:

• Biologically accurate

• Capable of testing/optimizing control structures

• Easy to adjust for new experiments

• Easy to distribute
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In order to accomplish these goals, we needed to select an appropriate modeling tool,
collect biological data, build and verify the model, and design and implement a control
structure.

2 State of the art

2.1 Insect models and control

Very little work has been done to understand and model Drosophila walking. Neverthe-
less, we can learn a lot by examining the research done on other walking insects. Almost
all work to date has focused on stick insects or cockroaches. Stick insects have a simpler
morphology and are therefore simpler to model while cockroaches are larger and easier
to experiment with.

Insect walking

The most in-depth study of Drosophila walking is found in [50]. This paper outlines the
basic coordination of limbs for walking at different speeds and turning (Figures 4 and 5).
More general information on insect walking can be found in [52], and [39] describes the
parameters specifically associated with stick insect walking.

Figure 4: Patterns of footprints in Drosophila (from [50])
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Table 1. Linear regression and correlation parameters for the phase 
dependence on period for contralateral ipsisegrnental legs in the 
period range used for continuous straight walking 

legs y-int slope [1/ms] r n mean 
phase 

L1 :R1 0.469 2.284-10 -4 0.055 289 0.489 
RI :LI 0.533 - 3.238.10 -4 -0.079 289 0.504 
L2:R2 0.521 -3.735'  10 -4 -0.087 292 0.489 
R2 : L2 0.480 2.944.10- 4 0.070 296 0.505 
L3 :R3 0.501 - 1.405.10 -4 -0.031 295 0.489 
R3 : L3 0.479 2.480.10 - 4 0.053 293 0.501 

y-int, ordinate intercept; slope, regression coefficient; r, correlation 
coefficient; n, number of observations. In all cases confidence inter- 
vals include slopes of either sign already at a level of confidence 
between 40% and 70% 

of  two d is t inc t  gai ts  one  be ing  a perfect  t r i pod  c o o r d i n a -  
t ion.  Therefore ,  the d i s t r i bu t ion  o f  s teps o f  a cer ta in  
pe r iod  a n d  lag (P3, 3L1) is shown in Fig.  3. (P3 and  
3L1 are  m e a s u r e d  in discrete  uni ts  o f  f rame du ra t i on ,  
i.e. 5 ms.)  D a t a  are  d i s t r ibu ted  Gaussean - l i ke  a r o u n d  
the respect ive  mean  va lue  o f  3L1 ( regress ion curve shown 
as solid line) and  there  is no  s ignif icant  evidence for  
the existence o f  two dis t inct  gai ts  in Drosophi la  f rom 
these da ta .  

Whi l e  m e t a c h r o n a l  lag is weak ly  depend ing  on peri-  
od,  there  is no  such dependence  for  the  phase  re la t ion  
be tween  con t r a l a t e r a l  ( ips isegmenta l )  legs. They  s tay in 
exact  an t iphase  over  the ent i re  pe r iod  range  used for  
c on t i nu ous  s t ra ight  walk ing .  L inea r  regress ion  and  cor-  
re la t ion  p a r a m e t e r s  a re  given in Table 1. In  none  o f  the 
cases the s lope is o f  s ta t is t ical  s ignif icance:  The  confi-  

Fast walk!
3.8 cm/s!
12.7 steps/s!

Slower walk!
2.2 cm/s!
10.0 steps/s!

Stance!
Swing!

Figure 5: Temporal footfall patterns during walking (adapted from [50])

Central pattern generators (CPGs)

Legs tend to move in a consistent, coordinated, and rhythmic pattern. In many animals
this neuronal coordination is organized in a hierarchical manner such that a simple motor
command can generate a complex, rhythmic motion even without feedback from the
peripheral nervous system. The oscillating network of neurons that create the signal is
known as a central pattern generator (CPG) and has be shown to exist in a wide variety
of animals from invertebrates to vertebrates. [37] provides a good overview of CPGs in
both animals and robots while [11] describes the related biology. CPGs present a variety
of interesting properties including distributed control, dealing with redundancies, and
creating complex motion from simple control signals. CPGs can be modeled in many
ways, but they are often simplified to a dynamical system of coupled oscillators. Several
have suggested that insects use CPGs to control their walking, and there are several
examples of CPGs used to control insect-inspired robots [1, 6, 38].

Series of reflexes

The work of Holk Cruse with the stick insects suggests that reflexive controllers (i.e. based
on reflexes without CPGs) can also lead to robust insect locomotion [14, 17, 15, 16, 40, 45].
Based on biological data and tested through simulation, he condensed the reflexes into a
set of rules that allow for insect-like walking (Figure 7).
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the dog and, mainly, the cat are of interest. Studies concentrating on
neurophysiology but not so much on behaviour have also been done with mice
and rats, and newts. The two-legged animal studied most is, of course, humans.
However, most studies on humans concentrate on standing, on the control of
upright posture or on handicapped people, e.g. paraplegic patients. However, the
lower-level control problems, i.e. control and properties of individual muscles in
the context of behaviour, have most intensively been studied in humans (Inman
et al. 1981) and in cats (Pearson 1993b). Recently, the overwhelming importance
of muscular properties to the control problem, in general, has also been shown for
insects, in particular the cockroach (e.g. Full & Tu 1991; Full et al. 2002).

Asmentioned, the most detailed studied insects are cockroaches and stick insects.
Cockroaches are specialized to fast walking, up to 25 steps per second. At this high
speed, propriosensory input is of less importance and walking over rugged
environment is mainly solved by exploiting the elastic properties of muscles. On
the other hand, stick insects are adapted to walk and climb in more difficult
environmental situations as, for example, climbing in branches. This behaviour
requires a higher degree of sensitivity with respect to the ever-changing properties of
the environment and needs a control system that is able to intelligently react to this
information. As we are interested in studying the principles underlying autonomy
and decision-making in neuralmotor control, we therefore decided to concentrate on
stick insects, which will be the main subject in the rest of this article.

(f ) Modelling autonomous walking by behaviour-based, distributed ANNs

In a walking insect, at least three joints per leg have to be controlled (figure 1): the
thorax–coxa joint (TC-joint); the coax–trochanter joint (CT-joint); and femur–tibia
joint (FT-joint). The CT- and FT-joints are simple hinge joints with 1 d.f.

Pro/R
e FT

CT Dep
/Lev

TC

Flx/Ex
t

AEP

PEP

ta

tife
CX

Figure 1. A simple model of a stick insect leg. Each leg can be modelled as a manipulator with three
hinge joints, resulting in 3 degrees of freedom (d.f.). From the body towards the foot, the joints are
called the thorax–coxa joint (TC), the coxa–trochanter joint (CT) and the femur–tibia joint (FT).
The joint axes (solid arrows) account for protraction/retraction of the coxa (Pro/Re),
depression/levation of the trochanter and femur (Dep/Lev), and flexion/extension of the tibia
(Flx/Ext). The joint of the foot and the foot itself are neglected for simplicity. Each step cycle can
be divided into two states: the stance movement on the ground (dashed arrow) and swing
movement through the air (dotted arrow). The state transitions occur at the anterior extreme
position (AEP) and posterior extreme position (PEP).

H. Cruse et al.224
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Figure 6: Cruise stick insect leg model (from [16])

mechanism appears to be ubiquitous among legged animals, it is yet a
matter of debate to what extent it is mediated neurally. Experimental
results on walking cats suggest that at least part of the coordination
according to rule 1 is due to a local load-sensing mechanism that
prohibits lift-off of a leg until it is sufficiently unloaded. This makes
sense, as unloading of a leg typically signals that the body weight is
maintained by the other legs. A recent modelling study on contralateral
leg coordination in cat walking suggests that sensory information about
ankle load is sufficient to maintain a stable coordination (Ekeberg &
Pearson 2005).

Rule 2 Facilitate early protraction to favour temporal coherence. Rule 2 exerts
an excitatory influence on anterior legs. Upon touchdown of a leg, it
facilitates lift-off of the next anterior leg. Thus, rules 1 and 2 act to
couple a back-to-front sequence of swing movements, first by
suppressing, then by facilitating a stance–swing transition in the anterior
leg. Rule 2 has been shown in stick insects (Cruse & Schwarze 1988),
where it also acts contralaterally (Cruse & Knauth 1989), although
weaker than ipsilaterally (Dürr 2005a).

Rule 3 Enforce late protraction to maintain temporal coherence. Rule 3 exerts an
excitatory influence on posterior legs during late stance. The closer a leg gets
to its normal lift-off position, the stronger is the facilitatory influence on the
posterior leg in stance to undergo a stance–swing transition. By this
influence, an anterior leg can enforce a swing movement, causing its rear
neighbour to ‘catch up’ in order tomaintain the rhythm.Like rule 2, this rule
is active in stick insects (Cruse & Schwarze 1988), where it also acts
contralaterally (Cruse & Knauth 1989).

L1 R1

L2 R2

L3 R3

2,3,5

1,2,5 3,4
5,6

1,2,5 3,4
5,6

3,4
5,61,2,5

2,5

2,3

3,4
5,61,2,5

rule action goal

1 suppress lift-off avoid static instability

favour temporal coherence

maintain temporal coherence

exploit prior foothold

share load efficiently

avoid stumbling

facilitate early protraction

enforce late protraction

enforce correction step

aim touch-down location

distribute propulsive force

2

3

4

5

6

(3?)

(5?)

Figure 2. Known leg coordination rules that couple step cycles of neighbouring legs. Each of the
six legs (boxes labelled L1 to L3 for the left front, the middle and the hind legs, respectively, and
R1 to R3 for the corresponding right legs) signals information about its current state to its
neighbours (arrows). The known coordination rules are numbered according to the list to the
right. Numbers next to the arrows denote the rules known to be present in a given signalling
pathway. The table lists actions and goals that can be associated with the experimental evidence.
The corresponding behavioural findings in stick insects are: rule 1, return stroke inhibits start of
return stroke of anterior leg; rule 2, start of power stroke excites start of return stroke of anterior
leg; rule 3, increasingly posterior position excites start of return stroke in posterior leg; rule 4,
tarsus position determines target posture of return stroke of posterior leg; rule 5, increased
resistance increases force (co-activation) and increased load prolongs power stroke; and rule 6,
treading-on-tarsus reflex.

H. Cruse et al.228

Phil. Trans. R. Soc. A (2007)
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Figure 7: Leg coordination rules (from [16])

Hybrid approach

The truth probably lies somewhere between a centrally controlled coordination and pure
reflex. Ekeberg investigates the interaction between these controls through a simulation
in [26]. On the robotics side, [22] describes how to create robust, insect-inspired hexapod
robots based on interactions between CPGs and sensory feedback from the moving legs.

2.2 Hexapod robots

Legged locomotion is the most common way for animals to move. It also allows for systems
to traverse much more complicated terrain than traditional wheeled robots. Hexapods in
particular have the advantage of being robust and statically stable during walking. Many
bio-inspired hexapod robots have been designed and simulated over the years. Several,
such as [1, 6, 38], use CPG-based controllers for control. Ferrell provides a good example
that explores different gaits (Figure 8) and control structures in [28, 29]. [23] outlines
the current knowledge of the physiological basis of insect walking along with its impact
on robotics.

9



R1
R2
R3

L1
L2
L3

slow wave gait
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L1
L2
L3

ripple gait

R1
R2
R3

L1
L2
L3

tripod gait

return stroke
power stroke

Figure 8: Commonly observed insect gaits used to develop robotic controllers (from [28])

3 Drosophila melanogaster morphology

3.1 Anatomy

The anatomy of Drosophila is similar to that of all insects. Flies have a three-segment
body with a head, thorax, and abdomen. Connected to the thorax are two wings and
three pairs of legs. Each leg has several joints and components in series. Figure 9 shows
the major components of the fruit fly that should be included in an accurate model.
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Thorax Abdomen 

Coxa 

Head 

Femur 
Trochanter 

Tibia 

Tarsus 

Wings 

Figure 9: Major components of Drosophila anatomy

Figure 10 details the different elements of the Drosophila leg. The coxa is connected
to the thorax and is the joint with the most degrees of freedom. The coxa is, in turn,
connected to the trochanter. As with many insects, the trochanter and femur are fused
together and can be viewed as a single component [47]. The femur is connected to the
tibia, which is in turn connected to the tarsal segments, or tarsus. The tarsal segments
have some flexibility and have been observed to bend during walking while lifting the
forelegs.

Coxa 

Trochanter 

Femur Tibia 

Tarsal segments 

Claw 

Figure 10: Drosophila leg anatomy (adapted from [31])

3.2 Leg degrees of freedom

The legs incorporate several different joints in series. These joints are held together by
tendons and use antagonistic muscles for actuation. With the exception of the thorax-
coxa joint, all of the joints are simple hinge-like elements that keep the leg mostly in
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plane. As with any system dependent on soft materials (i.e. tendons), there is a minute
amount of flexibility in the non-actuated direction (much like a human knee joint), but
the impact on overall motion of the leg can be considered negligible. In [48], Soler et
al. discuss the muscles and tendons contained within the Drosophila leg. From this, we
can begin to understand the degrees of freedom and relative strength of each joint. The
detailed leg musculature can be seen in Figure 11. In short, the coxa-trochanter, femur-
tibia, and tibia-tarsus joints are all in plane with one another and contain antagonistic
muscle pairs (levators and depressors).

(a) Miller leg musculature [44] (b) MHC-GFP stained leg (c) Soler et al. revised musculature

Figure 11: Muscles and tendons in Drosophila leg (adapted from [48])

Sink provides a more in-depth look at muscle development in Drosophila in[47]. This
work also addresses the thorax-coxa joint joint ignored in [48]. As shown in Figure
12, there are four major muscles which control the coxa position. I and K are able to
“promote” the leg, while J and L “remote” the leg (move the limb forward vs. backward).
Similarly, I and J will “abduct” the leg while K and L “adduct” the leg (lift vs. lower
the limb). These muscles can also cause a slight rotation of the limb (“anterior/posterior
rotation”), though this is used to a much smaller extent than promotion/remotion or
abduction/adduction.
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Figure 12: Thorax-coxa joint muscles (from [47])

Combining the understanding of anatomy with observations of live Drosophila, we can
develop a good model of how the leg is constructed and the various degrees of freedom
of each joint. Figure 13 shows the degrees of freedom associated with each joint. Each
leg has 6 degrees of freedom: 3 at the thorax-coxa joint, 1 at the coxa-trochanter joint,
1 at the femur-tibia joint, and 1 at the tibia-tarsus joint. This creates a organism with
36 degrees of freedom within the legs. These internal degrees of freedom provide a lot
of flexibility to the animal but require a non-trivial control system to coordinate all of
the joints during walking. Fortunately, most of the motion is (approximately) contained
within a single plane defined by the thorax-coxa joint, simplifying the control to a certain
extent.
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Figure 13: Leg degrees of freedom (adapted from [47])

3.3 Leg segment lengths

Given the morphology and degrees of freedom of the Drosophila leg, the next step before
developing a model is to obtain biologically plausible measurements for the length of each
segment. Unfortunately, there is no published data readily available on the lengths of
the leg components. Nearly all size-related measurements in literature use either weight,
wing length, thorax length, or total body length as a representative measurement. We
are, however, instead interested in the sizes of the legs. To get a first estimate of this
information, we took a series of pictures using a Canon EOS 600D camera with a macro
lens. We took images of the flies inside of transparent containers and in the open. We
attempted to get images of the flies in as many orientations as possible including the
underside. Using these images, we can develop a reasonably accurate model of the leg.
One of the few papers that addresses the size of particular body parts in Drosophila is
[30]. We used the typical female mesothorax length of 1.08 mm described in this paper
as a reference.
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Figure 14: Reference measurement (adapted from [30])

The initial measurements suffered from several sources of error. Most notably, the
measurements were rarely taken with the leg in plane with the image, leading to a pro-
jection with a shorter perceived length. Furthermore, because each image was taken at
a different orientation and distance from the subject, it was difficult to accurately esti-
mate the mesothorax length to scale each picture. In order to improve the quality of our
measurements, we took additional images using a Leica optical microscope at the Univer-
sité de Lausanne (UNIL). Average-sized female Drosophila were put on ice to immobilize
them before placing them under the microscope. The flies were then manipulated to so
that the particular legs could be well measured. The microscope images had a consistent
magnification and focus (and therefore pixel size), allowing us to calculate the conversion
factor to real units (the pixel size stored with the image metadata was incorrect). Using
this improved method, we were able to significantly improve the quality of our length
estimates. Table 1 shows the measurements taken on the images shown in Figure 15. All
of these images are of a single, female Drosophila, chosen for its representative size. The
measurements are in pixels with the conversion to millimeters applied at the end. The
best guess measurement for each segment was based on the high end of the new mea-
surements (due to the shortening effect of non-perpendicular projections) and previous
knowledge about the approximate lengths. For example, the mid-leg femur estimate is
longer than the single measurement because we knew the relative femur length from our
earlier measurements (longer than tibia).
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 15: Images used for leg measurements
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3.4 High-speed camera

In order to track and understand the coordination of leg movements, we used a high-speed
video setup. We began by collecting videos using the high-speed camera and magnifying
lens owned by the Laboratory of Intelligent Systems (LIS). Videos were taken at 250
and 500 frames per second. The higher frame rates allow for better tracking but require
higher light levels. The camera was mounted and focused on a known point in a well-lit
environment. The flies were then made to walk through this point of focus either by
placing the fly on a paper which could be moved to the point of focus or by starting the
fly on an elevated pathway such as a cable. The fly will naturally stay on the elevated
surface, allowing us to predict (and guide) the trajectory of the fly. However, due to
camera limitations, the quality of early high-speed camera footage was relatively poor.
In particular, the data only had a 7-bit depth, meaning that the usable range of the
camera was relatively low.

We collected significantly better data using a high-speed pco.edge 16-bit CMOS cam-
era. The camera also features a higher resolution (5.5 megapixels, though only a subset
were used). The setup is shown in Figure 17. The camera was mounted on a tripod
and aimed at the sample. Light was provided using a specialized equipment to prevent
the flies from being overheated by the bulbs. We placed average-sized female Drosophila

melanogastor in a new, transparent fly food vial and focused the image on the transpar-
ent surface. Be moving the plane of focus, we can observe the motion of the flies from a
variety of different angles. In particular, we wanted lateral and ventral views of the flies
as shown in Figure 18. Note that videos showing the lateral view are taken sideways (i.e.
the gravity vector points to the left side of the image). The videos captured with the
pco.edge had significantly better noise dynamic range and noise performance in addition
to being easier to use.
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!"#$!"#!$$%$$&'(!)*(+('$,-./$'01!20
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Figure 16: pco.edge sCMOS high-speed camera (©PCO AG)
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(a) Tripod mount (b) Sample lighting

Figure 17: High-speed camera setup

(a) Lateral imaging

(b) Ventral imaging

Figure 18: Example high-speed images

By observing Drosophila while walking, we notice that not all of the degrees of free-
dom are used equally. There are also physical limits to the possible joint angles. We
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relied heavily on the high-speed video footage to configure our hand-tuned controller
(see measurements in Appendix A). Furthermore, the video was used to further tune the
morphology (particularly the leg measurements) from the results obtained through im-
age analysis. We also noted a greater-than-expected amount of flexibility between tarsal
segments of the forelegs during normal walking. Figure 19 shows the observed bending
of the tarsus (in one direction). The significance of this fact remains unclear. It may be
an inadvertent action, it may aid with releasing the grip/adhesion to the surface, or may
serve some other purpose.

Figure 19: Flexibility of foreleg tarsus (3 ms between images)

4 Computational fly model

4.1 Webots

For our simulation we used the Webots 6 software from Cyberbotics Ltd.1. The soft-
ware incorporates an integrated development environment (IDE), physics engine, and
3-dimentional graphics to create a relatively simple way of implementing complex motion
simulations. Webots is designed as a robotics simulator and therefore has many actuation
and sensing capabilities built in. The following list of features made Webots stand out
as a simulation tool:

• Multi-platform (Linux, Windows, OS X)

• Open Dynamics Engine (ODE) for accurate physics simulation

• 3D visualization

• Sensor and actuator libraries to ease implementation

• Choice of programming languages (C, C++, Java, Python, MATLAB)

• EPFL knowledge base (BIOROB)

• Availability through EPFL license

• Expandable

• Existing documentation

• Easier conversion into hardware

In short, using Webots allowed this project and future projects to get up and running
quickly. By simplifying distribution and easing implementation of new ideas, the model
becomes significantly more valuable. A custom made solution may run more quickly,

1http://www.cyberbotics.com/

20

http://www.cyberbotics.com/


and may ultimately be a worthwhile investment, but a Webots-baed model can be easily
distributed and used to prototype experiments. Furthermore, because it is a mature and
commercially released piece of software, the number of bugs reduced and there is good
support material to get started [19, 18].

Figure 20: Webots graphical user interface (GUI)

4.2 Model

In Webots, the model and environment information is contained within a world (.wbt)
file. Within this file, objects and relationships are represented by a tree of specialized
Nodes such as Servos, TouchSensors, Transforms, etc. (Figure 21). The official Cyber-
botics documentation in [18] is particularly useful for designing and using Webots models.
The Drosophila model is constructed in a hierarchical manner. Figure 22 lists the most
important subset of the Nodes and the hierarchical relationship between them. Children
are denoted by indentation. Note that this list is not complete, but only lists the nodes
the user will typically interact with.
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18 CHAPTER 2. NODE CHART

Figure 2.1: Webots Nodes ChartFigure 21: Webots Nodes chart (from [18])
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DROSOPHILA Supervisor
HEAD TouchSensor
THORAX TouchSensor
ABDOMEN TouchSensor
WINGS TouchSensor
LF_TC_PRO/RE Servo

LF_TC_ABD/ADD Servo
LF_TC_ROT Servo

LF_COXA TouchSensor
LF_CT_FLEX/EXT Servo

LF_FEMUR TouchSensor
LF_FT_FLEX/EXT Servo

LF_TIBIA TouchSensor
LF_TT_FLEX/EXT Servo

LF_TARSUS TouchSensor
LF_CLAW TouchSensor

RF_TC_PRO/RE Servo
RF_TC_ABD/ADD Servo

RF_TC_ROT Servo
RF_COXA TouchSensor
RF_CT_FLEX/EXT Servo

RF_FEMUR TouchSensor
RF_FT_FLEX/EXT Servo

RF_TIBIA TouchSensor
RF_TT_FLEX/EXT Servo

RF_TARSUS TouchSensor
RF_CLAW TouchSensor

LM_TC_PRO/RE Servo
LM_TC_ABD/ADD Servo

LM_TC_ROT Servo
LM_COXA TouchSensor
LM_CT_FLEX/EXT Servo

LM_FEMUR TouchSensor
LM_FT_FLEX/EXT Servo

LM_TIBIA TouchSensor
LM_TT_FLEX/EXT Servo

LM_TARSUS TouchSensor
LM_CLAW TouchSensor

RM_TC_PRO/RE Servo
RM_TC_ABD/ADD Servo

RM_TC_ROT Servo
RM_COXA TouchSensor
RM_CT_FLEX/EXT Servo

RM_FEMUR TouchSensor
RM_FT_FLEX/EXT Servo

RM_TIBIA TouchSensor
RM_TT_FLEX/EXT Servo

RM_TARSUS TouchSensor
RM_CLAW TouchSensor

LH_TC_PRO/RE Servo
LH_TC_ABD/ADD Servo

LH_TC_ROT Servo
LH_COXA TouchSensor
LH_CT_FLEX/EXT Servo

LH_FEMUR TouchSensor
LH_FT_FLEX/EXT Servo

LH_TIBIA TouchSensor
LH_TT_FLEX/EXT Servo

LH_TARSUS TouchSensor
LH_CLAW TouchSensor

RH_TC_PRO/RE Servo
RH_TC_ABD/ADD Servo

RH_TC_ROT Servo
RH_COXA TouchSensor
RH_CT_FLEX/EXT Servo

RH_FEMUR TouchSensor
RH_FT_FLEX/EXT Servo

RH_TIBIA TouchSensor
RH_TT_FLEX/EXT Servo

RH_TARSUS TouchSensor
RH_CLAW TouchSensor

Figure 22: Structure of Webots model
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The most important Node types to be familiar with are the TouchSensor and Servo
nodes. In our model, TouchSensor nodes are used to represent the physical components
of the body that interact with the environment. Each TouchSensor has a bounding box
used by the physics engine. When enabled, collisions with the bounding box can be read
out and used by the controller. The result can be either a binary “touched” (1.0) or “not
touched” (0.0) or give the exact forces as calculated by the physics engine (type should
be changed from “bumper” to “force” or “force-3d” for this). The Servo nodes act as the
antagonistic muscles of the fly. The Servo naming convention is as follows:

RF_TT_FLEX/EXT 

R = right 
L = left 

PRO/RE = promotion/remotion 
FLEX/EXT = exion/extension 

ABD/ADD = abduction/adduction 
ROT = rotation 

TC = thorax-coxa joint 
CT = coxa-trochanter joint 
FT = femur-tibia joint 
TT = tibia-tarsus joint 

F = foreleg 
M = mid-leg 
H = hind-leg 

Note that using a servo motor to model a biological joint loses many of the biological
details of the joint (muscle flexibility, mechanical advantage, etc.). Nevertheless, it a
logical simplification. Servos have a simple control loop that try to get the angle to the
desired position while following limitations on speed and force. These parameters can be
adjusted by the user. The force of the Servo can even be set to zero to create a passive
joint. Children of Servo nodes are connected and transformed as if they were physically
connected. This is important for modeling the leg with a series of actuators. The model
is designed so that, given position values of zero for each Servo, the the legs will extend
straight down from the thorax. Angles are measured relative to the axis of each limb.
Figure A shows how the Servo positions are calculated. Figures 24 and 25 show the
3-dimensional visualization of the model. The coordinate system of each Node is marked
by a set of colored axes (x in red, y in green, and z in blue). Note that Webots also uses
the y-direction as the vertical (with gravity).
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Figure 23: Angle measurement

Figure 24: Webots Drosophila model
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(a) Top view

(b) Front view (c) Side view

(d) Bottom view

Figure 25: Webots model views

Webots is designed for robotics and therefore works better with objects of a certain
size (size of typical robots and their environment ranges from in the centimeter-scale to
the decimeter-scale). Therefore, the model is scaled by a factor of 100 in order to ease
interaction with the model through the GUI. The mass of each component is calculated
based on a constant density (which has not been tuned). The ABDOMEN has a density
equal to half of the other nodes to improve balance. A current limitation of the Webots
model is the simulation speed. Drosophila walk using a very fast pattern (upwards of 10
steps/s) while there are practical limits to the simulation time step within the Webots
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physics system (≈1 ms for the physics simulation). Currently the entire motion is run at
a greatly reduced rate (one cycle every 1.4 seconds). The simulation could be improved
by increasing the maximum velocity of the limbs and lowering the simulation time step.

Figure 26 shows the major components of the body. The head is modeled as a capsule
and two spheres for eyes; the the thorax is a sphere; the abdomen is a capsule; the wings
are a thin, capsule-shaped box; and the legs are made of a series of capsules with a sphere
for the claw. The geometry is symmetric between the right and left sides of the body.
Each leg has unique component identifiers (important for control) that begin with the
two-letter leg identifier (shown in red in Figure 26). The first letter indicates the side
and the second indicates the anterior/posterior position.

THORAX 

HEAD 

ABDOMEN 

WINGS 

LF 

LM 

LH 

RF 

RM 

RH 

Identifier 
TouchSensor 

Figure 26: Annotated model

Figure 27 shows the annotated right foreleg as an example. The other legs are struc-
tured identically but have different identifiers and (possibly) lengths. The Servos (labeled
in blue) follow the naming style described earlier.
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RF_FEMUR 

RF_TIBIA 

RF_TARSUS 

RF_CLAW 

RF_COXA 

RF_TC_PRO/RE 
RF_TC_ABD/ADD 
RF_TC_ROT 

RF_CT_FLEX/EXT 

RF_FT_FLEX/EXT 

RF_TT_FLEX/EXT 

Servo 
TouchSensor 

Figure 27: Annotated right foreleg

The similarity between the biological and simulated fly means that the simulation
results can have both physical and biological significance. That is to say, our exploration
of locomotion parameters in simulation can be used to create an effective controller for
the physical robot and/or gain insight into the biological workings of living flies.

4.3 World Generator

In order to accommodate future experiments and changing morphological data, we cre-
ated a world generator script in Python. Because many of the model parameters are
interdependent, adjusting a single dimension of the model using the Scene tree quickly
becomes a difficult process. The script allows the user to change dimensions associated
with the fly morphology and automatically generate a new Webots world file. It was cre-
ated by taking an existing world file and replacing key dimensions with variables that can
be adjusted in a single location by the user. The script may also be useful for experiments
regarding the co-evolution of morphology and control.

Because Webots also includes environmental information along with the model itself,
the environment is also created using this script. Currently, the DROSOPHILA Super-
visor is placed in a world with gravity and a single, flat “ground” plane on which to walk.
Desired changes to the Webots world can be made to the generated world file itself, but
all changes are lost once a new world is created. For this reason, it is best to incorporate
any changes in the Webots world file into the Python script. This can be done by copying
the (fortunately human-readable) changes into the script. Currently only the leg lengths
are adjustable through this file.

4.4 Controller

Controllers can be written in any of Webot’s supported languages (C, C++, Java, Python,
Matlab). The API for each language is available in [18]. The current implementation is
realized in Python. The main aspects of the controller are the initialization, in which
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the controller associates the Servos and TouchSensors associated with a model, and an
update loop where joint positions are updated and the physics is calculated and applied.

Walking in Drosophila melanogastor is a cyclic and coordinated action. There are
several ways to create this kind of motion. Quite possibly the simplest solution is to use
a sine-based controller. Using this structure, each limb has a unique amplitude, offset,
and phase lag relative to a global sine-wave. The rhythmic nature is guaranteed by
the periodic nature of the sine wave, while coordination is achieved through the relative
phase offsets between limbs. A sine-based controller can be thought of as an extremely
simplistic CPG model in that it creates rhythmic motion without the need for feedback
from peripheral senses. The parameters of the controller were tuned by hand to match
the observed motion in the high-speed videos. In particular, we noted the maximum and
minimum angles of each joint and the relative phase offsets during normal walking. Using
this information we were able to create a realistic alternating tripod gait.

(a) High-speed video of live Drosophila (b) Webots model with hand-tuned controller

Figure 28: Comparison between biology and model

In order to ease implementation, we created several new classes: a Joint class which
contains the Servo and related oscillator settings; a Leg class which contains the associated
joints; and a Drosophila class which is derived from the Webots-supplied Supervisor class
which contains the six legs and runs the simulation.

5 Optimization

5.1 Structure

Problem

Fly walking is an extremely complex task. In addition to coordinating 36 degrees of free-
dom, the fly must make sense of its sensory information and react accordingly. There are
many biological or control-related questions that can be tested with our model related
to both locomotion and sensing. As a first experiment, we considered optimizing various
control parameters and seeing how the results match biological data. We hope to ulti-
mately test larger control questions about CPGs and reflex-based control in Drosophila,
but for the purposes of this semester project, we limited the scope of our problem. We
simply tested how well optimized the Drosophila gait is for speed. Unfortunately there
are too many parameters to practically optimize each of the joint parameters indepen-
dently. Even with a simple sine-based approach, each joint has 3 parameters, resulting
in over 100 different parameters to optimize over the six legs. Therefore we limit the
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search space of our optimization question. Using our hand tuned parameters, we cre-
ate six independent leg oscillators. The legs each have the same internal motion as in
the biologically-modeled hand-tuned controller. The only parameters which are free to
change are the relative phases between these leg oscillators. Since we have 6 legs and are
only interested in the relative phase between the leg oscillators, we fix one of the phases
(in our case the left foreleg). For an alternating tripod gait as we had in the hand-tuned
controller, three of the phase offsets would be set to π and the others to zero.

Particle swarm optimization

We use the free, open-source inspyred2 framework for our evolutionary computation.
The inspyred package contains a variety of biologically-inspired optimization algorithms
in Python including genetic algorithms (GA) and particle swarm optimization (PSO),
among others. We use PSO for our optimization experiments due to its simplicity and
quick convergence. Note that the particular optimization algorithm can be adjusted
relatively easily within the framework.

Particle swarm optimization is an iterative computational method for solving op-
timization problems. Candidate solutions are initialized with a random position and
velocity within the search space (in our case, a 5-dimensional hyperspace). The particles
have a fitness value at their position (calculated with Webots) and a memory of the loca-
tion and value of best fitness it has previously encountered. Each generation, the particle
moves to a new position based on the previous velocity and attractors to the personal
best solution and previous best in the neighborhood (associated particles which share
their best results). In particular, each iteration the particles are adjusted according to
equations 1 and 2.

vt+1
i = wvt

i + c1r1
�
pt
b,i − xt

i

�
+ c2r2

�
pt
n,i − xt

i

�
(1)

xt+1
i = xt

i + vt
i (2)

where vt+1
i is the velocity at t+ 1 of particle i, vt

i is the current velocity of the particle,
xt
i is the current position of the particle, pt

b,i is the position of the personal best solution
of particle i, pt

n,i is the position of the neighborhood best solution, r1 and r2 are random
numbers in the range [0,1], and the coefficients w (inertia weight), c1 (cognitive rate),
and c2 (social rate) are fixed. The values of w, c1, and c2 are very important to the
effectiveness of PSO. For our simulation, we use the values w = 0.7, c1 = 1.47, and
c2 = 1.47 as suggested in [21, 12].

The approach as described here and implemented in inpyred is outlined in [21]. How-
ever, because our search space is actually periodic/circular (0 = 2π), we must implement
a specialized bounding function and be sure to properly calculate the vector to the pervi-
ous bests. In order to do this, a custom PSO class is created which inherits the inspyred
class, and replaces vector determination function to support periodic dimensions.

5.2 Results

Based on preliminary tests, we found that our PSO tended to converge within 50 gener-
ations. Knowing this, we ran 25 experiments with 30 particles each over 50 generations.

2http://inspyred.github.com/
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The neighborhood was a ring topology with 11 neighbors (5 on each side) and the fitness
function was simply the average speed over a 5 second simulation. We tracked the best,
mean, and median fitness for each generation, in addition to the position of the best
solution. The final results are shown in Table 2. A common problem with PSO is that
particles often get stuck around local optima. We try to overcome this by running a
large number of experiments and reinitializing the particles each time. Figure 29 shows
the evolution of the best particle for each generation. We found that there were four
optima that the PSO tended to find (colored in green, blue, yellow, and orange). These
correspond to four different, yet locally optimized gaits. Figure 30 shows the result of our
k-means clustering analysis graphed on three of the five dimensions. The relative number
of occurrences of each optima can be seen in Figure 31. The primary/global optimum
was found 60% of the time. Note that all of the optimized gaits had a better the fitness
than the hand-tuned controller.
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Figure 29: Evolution of best fitness categorized by final result
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Normalized
Fitness

LF
Phase

RF
Phase

LM
Phase

RM
Phase

LH
Phase

RH
Phase

Primary optimum

1.00 0.00 193.42 97.47 280.65 268.23 85.49
0.99 0.00 184.51 88.37 267.29 254.55 77.75
0.99 0.00 198.96 98.30 282.82 268.72 72.54
0.99 0.00 175.64 81.86 264.92 240.74 81.00
0.98 0.00 151.02 91.89 266.66 248.14 81.63
0.98 0.00 202.40 88.29 281.01 263.58 68.53
0.98 0.00 170.44 67.99 249.39 226.20 58.90
0.98 0.00 188.44 96.03 279.65 269.88 75.68
0.98 0.00 160.31 92.52 274.79 265.31 87.88
0.98 0.00 197.84 84.35 283.69 257.79 69.20
0.98 0.00 182.66 72.73 267.60 245.32 59.27
0.97 0.00 156.17 72.33 257.31 219.57 64.24
0.96 0.00 147.94 78.45 257.77 245.84 76.80
0.96 0.00 237.84 107.25 306.26 280.85 76.01
0.96 0.00 168.55 66.90 244.01 215.30 54.16

Secondary optimum

0.92 0.00 310.51 158.27 206.40 313.21 71.21
0.91 0.00 309.26 123.73 186.81 289.90 57.83

Tertiary optimum

0.91 0.00 79.92 257.98 189.19 134.97 343.05
0.91 0.00 45.12 236.55 176.97 115.10 338.47
0.90 0.00 57.18 246.65 194.64 132.49 346.13
0.90 0.00 39.14 235.55 171.78 109.14 332.66
0.90 0.00 52.75 248.51 199.85 135.56 353.04

Quaternary optimum

0.87 0.00 161.95 244.27 57.69 99.03 288.90
0.86 0.00 163.10 252.81 61.89 94.86 283.79
0.84 0.00 278.18 181.03 68.98 33.51 249.56

Table 2: Best solutions found through each particle swarm optimization

In order to show convergence of our particle swarm optimization, we can look at the
results from the best of our runs. This experiment was actually run for 90 generations.
Figure 32 shows the best fitness along with the mean and median fitness for each gen-
eration. First we note that the quality of solutions does not change significantly after
50 generations – showing that our previous cutoff of 50 generation is adequate. We also
observe that the mean and median fitness improve quickly during the first 50 genera-
tions, indicating the the candidates are converging near the best result. This convergence
signals a change from a global search to a more localized optimization. Figure 33 shows
location the best particle location along all 5 dimensions for each generation of the best
experiment (note that which particle is being graphed can vary from one generation to
the next). Again, we note how the particles quickly converge to a solution. The fact that
the solution converges so quickly means that there is not much time spent carrying out a
global search of the hyperspace. Instead the swarm converges to the first good solution
it can find – often leading to a convergence around a local optima. If we do not care
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about the local optima, the PSO parameters can be adjusted to help prevent premature
convergence (using time-varying coefficients, for example).
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Figure 32: Best optimization results
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Figure 33: Convergence along dimensions

Given the four different optima, it is interesting to consider the gaits that these
solutions correspond to. Figure 34 shows the gait diagrams of the hand-tuned and evolved
gaits.

Hand-tuned

The hand-tuned gait is an alternating tripod gait. This is the gait typically associated
with hexapods. It tends to have three legs touching the ground at the same time and is
statically stable.

Primary optimum

The primary solution most closely resembles the ripple gait discussed in [28, 29] and
observed in insects such as cockroaches. However, instead of having four legs on the
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ground at all time, the evolved gait only uses two or three. The gait is also similar to a
quadruped walking trot with the foreleg stance phase distributed between the fore- and
mid- legs (similar to how humans use different parts of their feet during during different
phases of walking).

Secondary optimum

The secondary optimum has three, clear power phases. Two opposite legs are always
pushing the fly forward together. The order is as follows: RF with LH, then RM with
LM, and finally RH with LF before the whole cycle repeats.

Tertiary optimum

The tertiary optimum is nearly identical to the secondary optimum except that the order
of the leg pairs is reversed: RH with LF, followed by RM and LM, and finally RF with
LH.

Quaternary optimum

The quaternaty solution is similar to the alternating tripod gait, but eliminates the speed
losses caused by the forelegs touching the ground too early and preventing more forward
motion.

5.3 Comparison to biology

The evolved gaits are similar to known biological gaits; however, most of the optimized
solutions are not associated with Drosophila locomotion. Furthermore, a greater amount
of time is spent in the swing phase than is observed in biology. In this way, the gaits
are unique. The alternating tripod gait is often considered the hexapod-equivalent of the
quadruped trot [4], but in our case, we found a gait which uses fewer legs touching the
ground at a time. It is logical that such gaits would outperform the alternative tripod gait
when only speed is considered. After all, if only two legs are used at a time, we can have
three power phases for each oscillator period, while the alternating tripod gait is limited
to two power strokes per cycle. This incongruity with nature comes from the limitations
of our simulation and the fact that we were only optimizing for speed. Intuitively, we
know that the Drosophila gait is optimized for more than just this. Energy consumption,
stability, and maneuverability all come to mind as other aspects in a real-world fitness
function.

Something which this simulation does not take into account was the fact that Drosophila

(and other flying insects) usually walk on walls, ceilings, or other non-horizontal surfaces
and need to actively adhere to the wall. With only two points of contact, the fly would
be unstable and may fall off. For this reason, it appears that an important condition
for Drosophila locomotion is that there always be at least three legs touching the
ground at a given point in time. Because of the way that the simulation was con-
structed with gravity as the only attractive force, the fly is able to use gaits which are
only dynamically stable – typically the realm of larger land animals. In many ways, we
have found what gaits may have evolved if flies did not develop the ability to adhere
to surfaces. A more accurate simulation would have to account for the grasping/adhe-
sion of the claws to the surface. Practically, this could take several forms. As a simple
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implementation, claw grabbing or adhesion can included by dynamically changing the
coefficient of friction between individual claw materials (which would need to be created)
and the ground (every object that is included in the physics calculation has an associated
material and coefficient of friction with other materials). Alternatively, the density/mass
of the claw can be dynamically adjusted during the simulation by the controller in order
to “grasp” or “not grasp” the surface. Note that the grasping should only be allowed
once the claw is in contact with the surface. A more accurate, though difficult, solution
is to adjust the physics engine to account for the attractive force of the claws. Addi-
tional research on the biological side will likely be necessary to understand the adhesion
mechanism before implementing it in simulation.

6 Conclusion and future work

Understanding insect locomotion is an ambitious but ultimately achievable goal. Drosophila

melanogaster are a particularly appealing insect to study due to its long history of bio-
logical and genetic studies. With Drosophila, we can engineer experiments which could
not be done with any other organism. The outcome of such a pursuit could help inform
our understanding of human locomotion and would allow us to tap the understanding of
millions of years of evolution to create more robust and dynamic walking systems. The
field of robotics is one which tries to leverage advances in all fields of science and tech-
nology, and this research lies at the exciting interface between biology and engineering.
Ultimately, such work can help both both fields increase their understanding. Biological
systems can inform how we design and program our robots, while simulation and robotic
systems allow biologists to test hypotheses that might otherwise be impossible to test.

The model presented here will hopefully allow us to test some basic questions on
Drosophila locomotion. We have created a biologically-plausible fly and have demon-
strated its ability to be used in optimization experiments. There are currently several hy-
potheses on insect locomotion ranging from CPGs to a series of simple reflexes. Through
a combination of biological and computational tests, we can hope to answer some of
these questions. The model is also constructed in such a way to be easily adapted to
new questions. For example, it may be interesting to co-evolve morphology and control
as discussed in [42]. Furthermore, because the model is created in a robotics simulator,
it also has the unique advantage of easily being able to be adapted to a real robot. New,
physical bio-inspired Drosophila robots could be created and use the same controller
structure that is being used to test biological questions.

The next immediate steps are to adapt the model to account of the adhesion of the
claws to surfaces and test locomotion questions with this updated model. The gaits that
we evolved, though interesting are not necessarily relevant to the Drosophila biology.
They could be used to operate a hexapod robot with the Drosophila morphology in
normal conditions, but consider the following: What if the robot could climb walls and
ceilings? This is an attractive proposition. By understanding how flies are able to do
this, we may be able to create robots that can work in the same way.
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A Joint limits

Table 3 gives the observed joint angle limits (minimum and maximum) during normal
walking. Refer to Figure 23 for a diagram of how angles are measured. All measurements
are in degrees.
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Foreleg 70 to 80 -40 to 10 85 to 170 35 to 140
Mid-leg -15 to 20 20 90 to 110 90 to 110
Hind-leg -75 to -40 40 to 60 40 to 110 50 to 145

Table 3: Joint angle limits during normal walking

B Installation

Installing Python and packages

1. Get the latest version of Python (2.X) from http://www.python.org/download/

2. Install Python on the system:

$ tar xvjf Python -2.7.3. tar.bz2
$ cd Python -2.7.3. tar.bz2
$ ./ configure
$ make
$ su
$ make install
$ exit
$ make clean

3. Get ez_setup.py from http://peak.telecommunity.com/dist/ez_setup.py (or
download setuptools from http://pypi.python.org/pypi/setuptools)

4. Install easy_install:

$ python ez_setup.py

5. Install pip and use to get necessary (and useful) packages:

$ easy_install pip
$ pip install inspyred
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$ pip install numpy
$ pip install scipy
$ pip install matplotlib

Running simulation

1. Open the drosophila.wbt file from inside the worlds/ folder

Running optimization

1. Configure optimization parameters (coefficients, termination conditions, etc.) and
ensure that the Webots path is correct within optimize.py

2. Run the optimize.py:

$ python optimize.py

Note: multiple instances of Webots can run simultaneously. A simple way to run multiple
experiments in parallel is to simply duplicate the drosophila/ folder and run the script
in the new folder as well.

C Code

All of the necessary files for the model are contained within a single folder (with the
exception of the Python and Webots installations):

drosophila/
controllers/

drosophila/
drosophila.py
parameters.txt
results.txt

worlds/
drosophila.wbt

optimize.py
world_generator.py
log.csv

In reality, only the Python files are necessary, since world_generator.py can generate
the Webots world file and most other files are only created once the optimization is run.
The following pages contain the core Python code.
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