Building a Computational Fly:
i Modeling Drosophila melanogaster
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DROSOPHILA

= Commonly known as the “fruit fly”

= Model organism in biological
research (extensively studied)
= Small
= Short generation time
= Easy to care for
= |arge brood numbers




PROBLEM

= Drosophila have been extensively studied, but only
limited work has been done to understand their
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= By understanding insect locomotion, we can harness
insight from millions of years of insect evolution to

build more
= These same engineering experiments can also help




GOALS

= |nvestigate Drosophila morphology and locomotion

= Build a biologically-accurate 3-dimentional model of Drosophila
melanogaster

= [Design controllers to test biological and robotic locomotion questions




STATE OF THE ART

Stick insects

Fruit flies

Schmitz et al., 2001
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WEBOTS

= We are using the Webots™ environment to build and test our model

Open Dynamics Engine (ODE) for physics
simulation

3D visualization

Sensor and actuator libraries to ease
implementation

Choice of programming languages (C, C++,
Java, Python, MATLAB)

EPFL knowledge base (BIOROB)
Availability through EPFL license
Expandable

Existing documentation

Easier conversion into hardware
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ANATOMY
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LEG MODEL

= Model based on anatomy and observation

= Each leg has
= 6 DoF x 6 legs = 36 total DoF

Soler et al., 2004 Soler et al., 2004
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IMAGE ANALYSIS




MODEL

= Biologically plausible fly
= Same morphology as Drosophila
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HIGH SPEED VIDEO




HAND-TUNED CONTROLLER




HAND-TUNED CONTROLLER

= Alternating tripod gait
= Statically stable
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QUESTION

= How well optimized is the biological controller for speed?
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OPTIMIZATION

= Six independent leg oscillators
= Hand-tuned internal parameters
= Particle Swarm Optimization (PSO)

= 5-dimensional search space (relative phase lag)
= Fitness: average speed over run
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OPTIMIZATION
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OPTIMIZATION
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OPTI

MIZATION

Best particle
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25 runs: 0.95
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OPTIMIZATION

= Primary optimum
= Ripple-like gait
= Normalized fitness: 1.00
= Found in 60% of runs
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OPTIMIZATION

& = Secondary optimum
= Trot-like gait
=  Normalized fitness: 0.92
= Found in 8% of runs
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OPTIMIZATION

= Tertiary optimum
= Alternate trot-like gait
= Normalized fitness: 0.91
= Found in 20% of runs
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OPTIMIZATION

¢ = Quaternary optimum

= Alternating tripod-like gait
= Normalized fitness: 0.87
= Found in 12% of runs
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SUMMARY

= Evolved gaits differ from = Hand-tuned,/biological
biological walks = Alternating tripod gait
= Normalized fitness: 0.61

One oscillation of optimized gait One oscillation of biological gait
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FUTURE WORK

= |mproved fitness function to
Incorporate stability, energy
consumption, and/or
maneuverability
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QUESTIONS
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PLAN

Build model Explore control
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