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DROSOPHILA 

§  Commonly known as the “fruit fly” 
§  Model organism in biological 

research (extensively studied) 
§  Small 
§  Short generation time 
§  Easy to care for 
§  Large brood numbers 
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PROBLEM 

§  Drosophila have been extensively studied, but only 
limited work has been done to understand their 
locomotion 

§  By understanding insect locomotion, we can harness 
insight from millions of years of insect evolution to 
build more robust, bio-inspired robots 

§  These same engineering experiments can also help 
answer biological questions 
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GOALS 
§  Investigate Drosophila morphology and locomotion 
§  Build a biologically-accurate 3-dimentional model of Drosophila 

melanogaster 
§  Design controllers to test biological and robotic locomotion questions 
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STATE OF THE ART 

5 Ferrell, 1993 Cruse et al., 1998 

Stick insects Fruit flies 

? 

Schmitz et al., 2001 

Cruse et al., 2007 

Ekeberg et al., 2004 



WEBOTS 
§  We are using the Webots™ environment to build and test our model 
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§  Open Dynamics Engine (ODE) for physics 
simulation 

§  3D visualization 
§  Sensor and actuator libraries to ease 

implementation 
§  Choice of programming languages (C, C++, 

Java, Python, MATLAB) 
§  EPFL knowledge base (BIOROB) 
§  Availability through EPFL license 
§  Expandable 
§  Existing documentation 
§  Easier conversion into hardware 



ANATOMY 
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LEG MODEL 

§  Model based on anatomy and observation 
§  Each leg has 6 degrees of freedom 

§  6 DoF x 6 legs = 36 total DoF 
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Soler et al., 2004 Soler et al., 2004 Adapted from Sink, 2006 



IMAGE ANALYSIS 
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MODEL 

§  Biologically plausible fly 
§  Same morphology as Drosophila  
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HIGH SPEED VIDEO 
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HAND-TUNED CONTROLLER 
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HAND-TUNED CONTROLLER 
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§  Alternating tripod gait 
§  Statically stable 
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QUESTION 
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§  How well optimized is the biological controller for speed? 
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OPTIMIZATION 

§  Six independent leg oscillators 
§  Hand-tuned internal parameters 

§  Particle Swarm Optimization (PSO) 
§  5-dimensional search space (relative phase lag) 
§  Fitness: average speed over run 
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OPTIMIZATION 
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OPTIMIZATION 

17 

K-means clustering 
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OPTIMIZATION 
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Best particle 
for each of 
25 runs: 



OPTIMIZATION 
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§  Primary optimum 
§  Ripple-like gait 
§  Normalized fitness: 1.00 
§  Found in 60% of runs 
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OPTIMIZATION 
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§  Secondary optimum 
§  Trot-like gait 
§  Normalized fitness: 0.92 
§  Found in 8% of runs 
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OPTIMIZATION 
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§  Tertiary optimum 
§  Alternate trot-like gait 
§  Normalized fitness: 0.91 
§  Found in 20% of runs 
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OPTIMIZATION 
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§  Quaternary optimum 
§  Alternating tripod-like gait 
§  Normalized fitness: 0.87 
§  Found in 12% of runs 

Right 
Legs"
	  

Left"
Legs"
	  



SUMMARY 
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§  Hand-tuned/biological 
§  Alternating tripod gait 
§  Normalized fitness: 0.61 
 

vs 

One oscillation of optimized gait One oscillation of biological gait 
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§  Evolved gaits differ from 
biological walks 



FUTURE WORK 
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§  Claw adhesion 
§  Improved fitness function to 

incorporate stability, energy 
consumption, and/or 
maneuverability 
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